[1] Alexandre R, Morimoto Y, Ukai S, et al. Boltzmann equation without angular cutoff in the whole space: I, global existence for soft potential. J Funct Anal, 2012, 262: 915-1010 [2] Alexandre R, Morimoto Y, Ukai S, et al. Regularizing effect and local existence for non-cutoff Boltzmann equation. Arch Ration Mech Anal, 2010, 198: 39-123 [3] Alexandre R, Morimoto Y, Ukai S, et al. Local existence with mild regularity for the Boltzmann equation. Kinet Relat Models, 2013, 6: 1011-1041 [4] Baranger C, Mouhot C. Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials. Rev Mat Iberoamericana, 2005, 21: 819-841 [5] Carrapatoso K. Exponential convergence to equalilibrium for the homogeneous Landau equation with hard potentials. Bull Sci Math, 2015, 139: 777-805 [6] Cao H M, Li W X, Xu C J. Analytic smoothing effect of the spatially inhomogeneous Landau equations for hard potentials. J Math Pures Appl, 2023, 176: 138-182 [7] Cao H M, Li H G, Xu C J, Xu J. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinet Relat Models, 2019, 12: 829-884 [8] Degond P, Lemou M. Dispersion relations for the linearized Fokker-Planck equation. Arch Ration Mech, 1997, 138: 137-167 [9] Desvillettes L, Villani C. On the spatially homogeneous Landau equation for hard potentials I. Existence, uniqueness and smoothness. Comm Partial Differential Equations, 2000, 25: 179-259 [10] DesvillettesL, Villani C. On the spatially homogeneous Landau equation for hard potentials II. H-theorem and applications. Comm Partial Differential Equations, 2000, 25: 261-298 [11] Duan R J, Liu S Q, Sakamoto S, Strain R M. Global mild solutions of the Landau and non-cutoff Boltzmann equations. Comm Pure Appl Math, 2020, 74: 932-1020 [12] Duan R J, He L B, Yang T, Zhou Y L.Solutions to the non-cutoff Boltzmann equation in the grazing limit. arXiv: 2105.13606 [13] Gressman P T, Strain R M. Global strong solutions of the Boltzmann equation without angular cut-off. J Amer Math Soc, 2011, 24: 771-847 [14] Guo Y. The Landau equation in a periodic box. Comm Math Phys2002, 231: 391-434 [15] Guo Y. The Boltzmann equation in the whole space. Indiana Univ Math J, 2004, 53: 1081-1094 [16] Hsiao L, Yu H J. On the Cauchy problem of the Boltzmann and Landau equations with soft potentials. Quart Appl Math, 2007, 65: 281-315 [17] Kim C, Guo Y, Hwang H J. A $L^2$ to $L^{\infty}$ approach for the Landau equation. Peking Math J, 2020, 3: 131-202 [18] Li H G, Xu C J. Cauchy problem for the spatially homogeneous Landau equation with Shubin class initial datum and Gelfand-Shilov smoothing effect. SIAM J Math Anal, 2019, 51: 532-564 [19] Deng D Q. Global existence of non-cutoff Boltzmann equation in weighted Sobolev space. J Stat Phys, 2022, 188: Art 25 [20] Villani C. On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equation. Arch Rational Mech Anal, 1998, 143: 273-307 [21] Villani C. On the Cauchy problem for Landau equation: Sequential stability, global existence. Adv Differential Equations, 1996, 1: 793-816 [22] Wang H, Fang Z D. Global existence and time decay of the non-cutoff Boltzmann equation with hard potential. Nonlinear Anal: Real World Appl, 2021, 63: 103416 |