[1] Barraa M, Boumazgour M. Spectra of the difference, sum and product of idempotents. Studia Math, 2001, 148: 1-3 [2] Barraa M, Boumazgour M. Inner derivations and norm equality. Proc Amer Math Soc, 2002, 130: 471-476 [3] Böttcher A, Spitkovsky I M. A gentle guide to the basics of two projections theory. Linear Algebra Appl, 2010, 432: 1412-1459 [4] Conde C. A note about the norm of the sum and the anticommutator of two orthogonal projections. J Math Anal Appl, 2022, 505(2): 125650 [5] Conway J.A Course in Functional Analysis. New York: Springer-Verlag, 1990 [6] Deng C Y. On the invertibility of Hilbert space idempotents. Acta Mathematica Scientia, 2014, 34B(2): 523-536 [7] Deng C Y. Invertibility of differences of two generalized idempotent operators. Acta Mathematica Scientia, 2009, 29A(6): 1477-1486 [8] Deng C Y, Du H K. A new characterization of the closedness of the sum of two subspaces. Acta Mathematica Scientia, 2008, 28B(1): 17-23 [9] Dou Y N, Shi W J, Cui M M, Du H K. General explicit descriptions for intertwining operators and direct rotations of two orthogonal projections. Linear Algebra Appl, 2017, 531: 575-591 [10] Dou Y N, Wang Y Q, Cui M M, Du H K.Spectra of anticommutator for two orthogonal projections. Linear Multilinear Algebra, 2019, 67: 2077-2081 [11] Du H K, Ji G X. Norm attainability of elementary operators and derivations. Northeast Math J, 1994, 10: 396-400 [12] Duncan J, Taylor P J. Norm inequalities for $C^*$-algebras. Proc Royal Soc Edinburgh, 1976, 75: 119-129 [13] Graybill F A.Matrices with Applications in Statistics. Belmont, CA: Wadsworth, 1983 [14] Halmos P R. Two subspaces. Trans Amer Math Soc, 1969, 144: 381-389 [15] Ji G X. Derivations attaining norm. Northeast Math J, 1989, 5: 490-498 [16] Lancaster P, Tismenetsky M.The Theory of Matrices. San Diego: Academic Press, 1985 [17] Luo W, Moslehian M S, Xu Q X. Halmos'two projections theorem for Hilbert $C^*$-module operators and the Friedrichs angle of two closed submodules. Linear Algebra Appl, 2019, 577: 134-158 [18] Omladic M. Spectra of the difference and product of idempotents. Proc Amer Math Soc, 1987, 99: 317-318 [19] Walters S. Projection operators nearly orthogonal to their symmetries. J Math Anal Appl, 2017, 446: 1356-1361 [20] Walters S.Anticommutator norm formula for projection operators. arXiv.1604.00699 [21] Wang Y Q, Du H K. Norms of commutators of self-adjoint operators. J Math Anal Appl, 2008, 342: 747-751 |