[1] Bellissard J, Iochum B, Scoppola E, Testard D. Spectral properties of one dimensional quasi-crystals. Commun Math Phys, 1989, 125(3): 527-543 [2] Bovier A, Ghez J. Spectral properties of one-dimensional Schrödinger operators with potentials generated by substitutions. Commun Math Phys, 1993, 158(1): 45-66 [3] Damanik D, Embree M, Gorodetski A, Tcheremchantsev S. The fractal dimension of the spectrum of the Fibonacci Hamiltonian. Comm Math Phys, 2008, 280(2): 499-516 [4] Damanik D, Gorodetski A. Spectral and quantum dynamical properties of the weakly coupled Fibonacci Hamiltonian. Commun Math Phys, 2011, 305(1): 221-277 [5] Damanik D, Lenz D. A condition of Boshernitzan and uniform convergence in the multiplicative ergodic theorem. Duke Math J, 2006, 133(1): 95-123 [6] Lenz D. Singular spectrum of Lebesgue measure zero for one-dimensional quasicrystals. Commun Math Phys, 2002, 227(1): 119-130 [7] Liu Q H, Qu Y H. Uniform convergence of Schrödinger cocycles over simple Toeplitz subshift. Annales Henri Poincaré, 2011, 12(1): 153-172 [8] Liu Q H, Qu Y H. Uniform convergence of Schrödinger cocycles over bounded Toeplitz subshift. Annales Henri Poincaré, 2012, 13(6): 1483-1500 [9] Liu Q H, Qu Y H. On the Hausdorff dimension of the spectrum of Thue-Morse Hamiltonian. Commun Math Phys, 2015, 338(2): 867-891 [10] Liu Q H, Qu Y H, Yao X. The spectrum of period-doubling Hamiltonian. Commun Math Phys, 2022, 394(3): 1039-1100 [11] Liu Q H, Peyrière J, Wen Z Y. Dimension of the spectrum of one-dimensional discrete Schrödinger operators with Sturmian potentials. C R Math, 2007, 345(12): 667-672 [12] Liu Q H, Tan B, Wen Z X, Wu J. Measure zero spectrum of a class of Schrödinger operators. J Stat Phys, 2002, 106(3/4): 681-691 [13] Liu Q H, Wen Z Y. Hausdorff dimension of spectrum of one-dimensional Schr?dinger operator with Sturmian potentials. Potential Analysis, 2004, 20(1): 33-59 [14] Kolar M, Ali M K. Generalized Thue-Morse chains and their physical properties. Physical Review B, 1991, 43(1): 1034-1047 [15] Süto A. Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci hamiltonian. J Stat Phys, 1989, 56(3/4): 525-531 [16] Toda M.Theory of Nonlinear Lattices. 2nd enlarged ed. Solid-State Sciences 20. Tokyo: Springer-Verlag, 1989 |