[1] |
Besicovitch A S, Taylor S J. On the complementary intervals of a linear closed set of zero Lebesgue measure. J London Math Soc, 1954, 29:449-459
|
[2] |
Cusick T W. Hausdorff dimension of sets of continued fractions. Quart J Math Oxford, 1990, 41:277-286
|
[3] |
Dodson M. Hausdorff dimension, lower order and Khintchine's theorem in metric Diophantine approximation. J Reine Angew Math, 1992, 432:69-76
|
[4] |
Durand A. On randomly placed arcs on the circle. Recent developments in fractals and related fields//Appl Numer Harmon Anal. Boston, MA:Birkhäuser Boston, 2010:343-351
|
[5] |
Falconer K. Fractal Geometry:Mathematical Foundations and Applications. Chichester:John Wiley & Sons, Ltd, 1990
|
[6] |
Fan A H, Li M T, Ma J H. Generic points of shift-invariant measures in the countable symbolic space. Math Proc Cambridge Philos Soc, 2019, 166:381-413
|
[7] |
Fan A H, Liao L M, Ma J H, Wang B W. Dimension of Besicovitch-Eggleston sets in countable symbolic space. Nonlinearity, 2010, 23:1185-1197
|
[8] |
Fan A H, Liao L M, Wang B W, Wu J. On Khintchine exponents and Lyapunov exponents of continued fractions. Ergodic Theory Dynam Systems, 2009, 29:73-109
|
[9] |
Fan A H, Liao L M, Wang B W, Wu J. On the fast Khintchine spectrum in continued fractions. Monatsh Math, 2013, 171:329-340
|
[10] |
Fang L L, Ma J H, Song K K. Some exceptional sets of Borel-Bernstein theorem in continued fractions. Ramanujan J, 2020, https://doi.org/10.1007/s11139-020-00320-8
|
[11] |
Fang L L, Wu M, Shang L. Large and moderate deviation principles for Engel continued fractions. J Theoret Probab, 2018, 31:294-318
|
[12] |
Good I J. The fractional dimensional theory of continued fractions. Proc Cambridge Philos Soc, 1941, 37:199-228
|
[13] |
Hawkes J. Hausdorff measure, entropy, and the independence of small sets. Proc London Math Soc, 1974, 28:700-724
|
[14] |
Iosifescu M, Kraaikamp C. Metrical Theory of Continued Fractions. Mathematics and Its Applications 547. Dordrecht:Kluwer Academic Publishers, 2002
|
[15] |
Jaffard S, Martin B. Multifractal analysis of the Brjuno function. Invent Math, 2018, 212:109-132
|
[16] |
Jarník V. Zur metrischen Theorie der diopahantischen Approximationen. Proc Mat Fyz, 1928, 36:91-106
|
[17] |
Jordan T, Rams M. Increasing digit subsystems of infinite iterated function systems. Proc Amer Math Soc, 2012, 140:1267-1279
|
[18] |
Kesseböhmer M, Stratmann B. Fractal analysis for sets of non-differentiability of Minkowski's question mark function. J Number Theory, 2008, 128:2663-2686
|
[19] |
Li B, Shieh N R, Xiao Y. Hitting probabilities of the random covering sets. Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics. II. Fractals in Applied Mathematics, Contemp Math, 2013, 601:307-323
|
[20] |
Liao L M, Rams M. Upper and lower fast Khintchine spectra in continued fractions. Monatsh Math, 2016, 180:65-81
|
[21] |
Liao L M, Rams M. Big Birkhoff sums in d-decaying Gauss like iterated function systems. arXiv preprint, 2019, https://arxiv.org/pdf/1905.02547.pdf
|
[22] |
Łuczak T. On the fractional dimension of sets of continued fractions. Mathematika, 1997, 44:50-53
|
[23] |
Pollicott M, Weiss H. Multifractal analysis of Lyapunov exponent for continued fraction and MannevillePomeau transformations and applications to Diophantine approximation. Comm Math Phys, 1999, 207:145-171
|
[24] |
Pólya G, Szegő G. Problems and Theorems in Analysis Vol I. Berlin:Springer-Verlag, 1972
|
[25] |
Ramharter G. Eine Bemerkung über gewisse Nullmengen von Kettenbrüchen. Ann Univ Sci Budapest Eötvös Sect Math, 1985, 28:11-15
|
[26] |
Tong X, Wang B W. How many points contain arithmetic progressions in their continued fraction expansion. Acta Arith, 2009, 139:369-376
|
[27] |
Wang B W, Wu J. A problem of Hirst on continued fractions with sequences of partial quotients. Bull Lond Math Soc, 2008, 40:18-22
|
[28] |
Wang B W, Wu J. Hausdorff dimension of certain sets arising in continued fraction expansions. Adv Math, 2008, 218:1319-1339
|