[1] Cho C H, Ko H. A note on maximal estimates of generalized Schrödinger equation. arXiv:1809. 03246v1 [2] Sjögren P, Sjölin P. Convergence properties for the time-dependent Schrödinger equation. Ann Acad Sci Fenn Ser A I Math, 1989, 14(1):13-25 [3] Barceló J A, Bennett J, Carbery A, Rogers K M. On the dimension of divergence sets of dispersive equations. Math Ann, 2011, 349(3):599-622 [4] Žubrinić D. Singular sets of Sobolev functions. C R Math Acad Sci Paris, 2002, 334(7):539-544 [5] Du X M, Zhang R X. Sharp L2 estimate of Schrödinger maximal function in higher dimensions. arXiv:1805. 02775v1 [6] Carleson L. Some analytic problems related to statistical mechanics//Euclidean harmonic analysis (Proc Sem, Univ Maryland, College Park, Md, 1979). Lecture Notes in Math, 779. Berlin:Springer, 1980:5-45 [7] Bourgain J. Some new estimates on oscillatory integrals. Essays on Fourier Analysis in Honor of Elias M. Stein (Princeton, NJ, 1991), Princeton Math Ser, Vol 42. New Jersey:Princeton University Press, 1995:83-112 [8] Bourgain J. On the Schrödinger maximal function in higher dimension. Proc Steklov Inst Math, 2013, 280(1):46-60 [9] Bourgain J. A note on the Schrödinger maximal function. J Anal Math, 2016, 130:393-396 [10] Lee S. On pointwise convergence of the solutions to Schrödinger equations in $\mathbb{R}^2$. Int Math Res Not, 2006. Art ID 32597, 21 pp [11] Miao C X, Yang J W, Zheng J Q. An improved maximal inequality for 2D fractional order Schrödinger operators. Studia Math, 2015, 230(2):121-165 [12] Moyua A, Vargas A, Vega L. Schrödinger maximal function and restriction properties of the Fourier transform. Internat Math Res Notices, 1996(16):793-815 [13] Sjölin P. Regularity of solutions to the Schrödinger equation. Duke Math J, 1987, 55(3):699-715 [14] Sjölin P. Nonlocalization of operators of Schrödinger type. Ann Acad Sci Fenn Math, 2013, 38(1):141-147 [15] Tao T, Vargas A. A bilinear approach to cone multipliers. II. Applications Geom Funct Anal, 2000, 10(1):216-258 [16] Vega L. E1 Multiplicador de Schrödinger, la Function Maximal y los Operadores de Restriccion(thesis). Madrid:Departamento de Matematicas, Univ Autónoma de Madrid, 1988 [17] Vega L. Schrödinger equations:pointwise convergence to the initial data. Proc Amer Math Soc, 1988, 102(4):874-878 [18] Dahlberg B E G, Kenig C E. A note on the almost everywhere behavior of solutions to the Schrödinger equation//Harmonic analysis (Minneapolis, Minn, 1981). Lecture Notes in Math, 908. Berlin-New York:Springer, 1982:205-209 [19] Du X M, Guth L, Li X C. A sharp Schrödinger maximal estimate in $\mathbb{R}^2$ . Ann of Math, 2017, 186(2):607-640 [20] Lucà R, Rogers K. A note on pointwise convergence for the Schrödinger equation. Math Proc Cambridge Philos Soc, 2019, 166(2):209-218 [21] Lucà R, Rogers K. Coherence on fractals versus pointwise convergence for the Schrödinger equation. Comm Math Phys, 2017, 351(1):341-359 [22] Du X M, Guth L, Li X C, Zhang R X. Pointwise convergence of Schrödinger solutions and multilinear refined Strichartz estimates. Forum Math Sigma, 2018, 6, e14, 18 pp [23] Lucà R, Rogers K. Average decay for the Fourier transform of measures with applications. J Eur Math Soc, 2019, 21(2):465-506 [24] Cho C H, Lee S, Vargas A. Problems on pointwise convergence of solutions to the Schrödinger equation. J Fourier Anal Appl, 2012, 18(5):972-994 [25] Lee S, Rogers K. The Schrödinger equation along curves and the quantum harmonic oscillator. Adv Math, 2012, 229(3):1359-1379 [26] Cho Y, Ozawa T, Xia S. Remarks on some dispersive estimates. Commun Pure Appl Anal, 2011, 10(4):1121-1128 [27] Dinh V D. Strichartz estimates for the fractional Schrödinger and wave equations on compact manifolds without boundary. J Differential Equations, 2017, 263(12):8804-8837 [28] Bourgain J, Demeter C. The proof of the l2 decoupling conjecture. Ann of Math, 2015, 182(1):351-389 [29] Tao T. A sharp bilinear restrictions estimate for paraboloids. Geom Funct Anal, 2003, 13(6):1359-1384 |