[1] Wu J H. The 2D Incompressible Boussinesq Equations. Beijing:Peking University Summer School Lecture Notes, July 23-August 3, 2012
[2] Wang C, Liu J G, Johnston H. Analysis of a fourth order finite difference method for the incompressible Boussinesq equations. Numerische Mathematik, 2004, 97(3):555-594
[3] Luo Z D. Mixed Finite Element Methods and Applications. Beijing:Chinese Science Press, 2006
[4] Luo Z D. The mixed finite element method for the non stationary Conduction-convection problems. C J Numer Math & Appl, 1998, 20(2):29-59
[5] Luo Z D, Wang L H. Nonlinear Galerkin mixed element methods for the non stationary conduction-convection problems (I):The continuous-time case. C J Numer Math & Appl, 1998, 20(4):71-94
[6] Luo Z D, Wang L H. Nonlinear Galerkin mixed element methods for The non stationary conduction-convection problems (II):The backward one-Euler fully discrete format. C J Numer Math & Appl, 1999, 21(1):86-105
[7] He Y, Lin Y, Sun W. Stabilized finite element method for the non-stationary Navier-Stokes problem. Discrete and Continuous Dynamical Systems B, 2006, 6(1):41-68
[8] Adams R A. Sobolev Spaces. New York:Academic Press, 1975
[9] Luo Z D, Li H, Sun P. A fully discrete stabilized mixed finite volume element formulation for the non-stationary conduction-convection problem. Journal ofMathematical Analysis and Applications, 2013, 44(1):71-85
[10] Ciarlet P G. The Finite Element Method for Elliptic Problems. North-Holland:Amsterdam, 1978
[11] Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. New York:Springer-Verlag, 1991
[12] Girault V, Raviart P A. Finite Element Methods for Navier-Stokes Equations:Theory and Algorithms. Berlin Heidelberg:Springer-Verlag, 1986
[13] Li S, Hou Y. A fully discrete stabilized finite element method for the time-dependent Navier-Stokes equa-tions. Applied Mathematics and Computation, 2009, 215(1):58-99 |