[1] Argyris J H, Scharpf D W. Finite elements in time and space. Nucl Engrg Des, 1969, 10: 456–464
[2] Bonnerot R, Jamet P. Numerical computation of the free boundary for the two-dimensional Stefan problem by space-time finite elements. J Comput Phys, 1977, 25: 163–181
[3] Bruch J C, Zyvoloski G. Transient two-dimensional heat conduction problems solved by the finite element method. Int J Numer Methods Engrg, 1974, 8: 481–494
[4] Castillo P, Cockburn B, Sch¨otzau D, et al. Optimal a priori error estimates for the hp-version of the local
discontinous Galerkin method for convection-diffusion problems. Math Comp, 2001, 71: 455–478
[5] Cella A, Lucchesi M. Space-time finite elements for the wave propagation problem. Meccanica, 1975, 10: 168–170
[6] Chen C M. Structure Theory of Superconvergence of Finite Elements. Changsha: Hunan Science and Technology Press, 2001
[7] Chen M H, Cockburn B, Reitich F. High-order RKDG methods for computational electromagnetics. J Sci Comput, 2005, 22/23: 205–226
[8] Ciarlet Jr P, Zou J. Fully discrete finite element approaches for time-dependent Maxwell equations. Numer Math, 1999, 82: 193–219
[9] Cockburn B, Li F, Shu C W. Locally divergence-free discontinuous Galerking methods for the Maxwell equations. J Comput Phys, 2004, 194: 588–610
[10] Douglas T, Dupont T, Wheeler M F. An L1 estimate and superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials. RAIRO Anal Numer, 1974, 8: 61–66
[11] Fried I. Finite element analysis of time-dependent phenomena. AIAA J, 1969, 7: 1170–1173
[12] Hesthaven J S, Warburton T. Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell equations. J Comput Phys, 2002, 181: 186–221
[13] Hughes T J R, Hulbert G M, Space-time finite element methods for elastodynamics: formulations and error
estimates. Comput Methods Appl Mech Engrg, 1988, 66: 339–363
[14] Lee R L, Madsen N K. A mixed finite element formulation for Maxwell’s equations in the time domain. J Comput Phys, 1990, 88: 284–304
[15] Lesaint P, Raviart P A. On a finite elment method for solving the neutron transport equation//deBoor C. ed. Mathematical Aspects of Finite Elements in Partial Differential Equations. New York: Academic Press, 1974: 89–123
[16] Li J. Error analysis of fully discrete mixed finite element schemes for 3-D Maxwell’s equations in dispersive media. Comput Methods Appl Mech Engrg, 2007, 196: 3081–3094
[17] Li J. Error analysis of finite element methods for 3-D Maxwell’s equations in dispersive media. J Comput Appl Math, 2006, 188: 107–120
[18] Li J, Chen Y. Analysis of a time-domain finite element method for 3-D Maxwell´s equations in dispersive media. Comput Methods Appl Mech Engrg, 2006, 195: 4220–4229
[19] Li J,Wood A. Finite element analysis for wave propagation in double negative metamaterials. J Sci Comput, 2007, 32(2): 263–284
[20] Lu T, Zhang P, Cai W. Discontinuous Galerkin methods for dispersive and lossy Maxwell´s equations and PML boundary conditions. J Comput Phys, 2004, 200: 549–580
[21] Johnson C. Error estimates and automatic time step control for numerical methods for stiff ordinary differential
equations. Technical Report 1984-27, Department of Mathematics, Chalmers University of Technology and University of G¨oteborg, G¨oteborg, Sweden, 1984
[22] Ma C F. Finite-element method for time-dependent Maxwell´s equations based on an explicit-magnetic-field scheme. J Comput Appl Math, 2006, 194: 409–424
[23] Makridakis C G, Monk P. Time-discrete finite element schemes for Maxwell´s equations. RAIRO Math Modeling Numer Anal, 1995, 29: 171–197
[24] Monk P. Anlysis of a finite element method for maxwell’s equations. SIAM J Numer Anal, 1992, 29(3): 714–729
[25] N´ed´elec J C. A new family of mixed finite elements in R3. Numer Math, 1986, 50: 47–81
[26] Oden J T. A general theory of finite elements II. Applications. Int J Numer Methods Engrg, 1969, 1: 247–259
[27] Reed W H, Hill T R. Triangular mesh methods for the neutron transport equation. Report LA-UR-73479, Los Alamos Scientific Laboratory, Los Alamos, 1973
[28] Wang B, Xie Z Q, Zhang Z M. Error analysis of a discontinuous Galerkin method for Maxwell equations in dispersive media. J Comput Phys, 2010, 229: 8552–8563
[29] Wang B, Xie Z Q, Zhang Z M. Space-time discontinuous Galerkin method for Maxwell equations. Commun Comput Phys, 2013, 14(4): 916–939
[30] Yee K S. Numerical solution of initial boundary value problems involving Maxwell´s equations in isotropic media. IEEE Trans Antennas Propagat, 1966, 14: 302–307
[31] Gao L P. Stability and superconvergence analysis of ADI-FDTD for the 2D Maxwell equations in a lossy medium. Acta Math Sci, 2012, 32B(6): 2341–2368
[32] Fang N S, Ying L A. Analysis of FDTD to UPML for Maxwell equaitons in polar coordinates. Acta Math Sci, 2011, 31B(5): 2007–2032
[33] Liu J J, Brio M, Moloney J V. A diagonal split-cell model for the overlapping Yee FDTD method. Acta Math Sci, 2009, 29B(6): 1670–1676 |