[1] Dupont T. L2 error estimates for Galerkin methods for second order hyperbolic equations. SIAM J Numer Anal, 1973, 10: 880–889
[2] Yuan Y R, Wang H. Error estimates for the finite element methods of nonlinear hyperbolic equations. J Systems Sci Math Sci, 1985, 5(3): 161–171
[3] Pani A K, Sinha R K. The efect of spatial quadrature on finite element Galerkin approximation to hyper-bolic integro-differential equations. Numer Funct Anal Optim, 1998, 19: 1129–1153
[4] Sinha R K. Finite element approximations with quadrature for second-order hyperbolic equations. Numer Methods PDE, 2002, 18: 537–559
[5] Zhang J, Yang D. A splitting positive definite mixed element method for second-order hyperbolic equations. Numer Methods PDE, 2009, 25(3): 622–636
[6] Holmes P, Lumley J L, Berkooz G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge UK: Cambridge University Press, 1996
[7] Fukunaga K. Introduction to Statistical Recognition. New York: Academic Press, 1990
[8] Jolliffe I T. Principal Component Analysis. Berlin: Springer–Verlag, 2002.
[9] Sirovich L. Turbulence and the dynamics of coherent structures: Part I-III. Quart Appl Math, 1987, 45: 561–590
[10] Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for parabolic problems. Numer Math, 2001, 90: 117–148
[11] Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J Numer Anal, 2002, 40: 492–515
[12] Luo Z D, Xie Z H, Chen J. A reduced MFE formulation based on proper orthogonal decomposition for the non-stationary conduction-convection problems. Acta Math Sci, 2011, 31B(5): 1765–1785
[13] Luo Z D, Zhu J, Wang R W, Navon I M. Proper orthogonal decomposition approach and error estimation of mixed finite element methods for the tropical Pacific Ocean reduced gravity model. Comp Methods Appl Mech Eng, 2007, 196(41-44): 4184–4195
[14] Luo Z D, Chen J, Zhu J, Wang R W, Navon I M. An optimizing reduced order FDS for the tropical Pacific Ocean reduced gravity model. Int J Numer Methods Fluids, 2007, 55(2): 143–161
[15] Luo Z D, Wang R W, Zhu J. Finite difference scheme based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations. Science in China Series A: Mathematics, 2007, 50(8): 1186–1196
[16] Luo Z D, Chen J, Nanvon I M, Yang X Z. Mixed finite element formulation and error estimates based on proper orthogonal decomposition for non-stationary Navier-Stokes equations. SIAM J Numer Anal, 2008, 47(1): 1–19
[17] Luo Z D, Yang X Z, Zhou Y J. A reduced finite difference scheme based on singular value decomposition and proper orthogonal decomposition for Burgers equation. J Comput Appl Math, 2009, 229(1): 97–107
[18] Luo Z D, Zhou Y J, Yang X Z. A reduced finite element formulation based on proper orthogonal decom-position for Burgers equation. Appl Numer Math, 2009, 59(8): 1933–1946
[19] Sun P, Luo Z D, Zhou Y J. Some reduced finite difference schemes based on a proper orthogonal decom-position technique for parabolic equations. Appl Numer Math, 2010, 60: 154–164
[20] Luo Z D, Chen J, Sun P, Yang X Z. Finite element formulation based on proper orthogonal decomposition for parabolic equations. Science in China Series A: Mathematics, 2009, 52(3): 587–596
[21] Adams R A. Sobolev Space. New York: Academic Press, 1975
[22] Luo Z D. Mixed Finite Element Methods and Applications. Beijing: Science Press, 2006
[23] Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978
[24] Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. New York: Springer-Verlag, 1991
[25] Girault V, Raviart P A. Finite Element Approximations of the Navier-Stokes Equations, Theorem and Algorithms. New York: Springer-Verlag, 1986
[26] Rudin W. Functional and Analysis. 2nd ed. New York: McGraw-Hill Co Inc, 1973 |