[1] Gurtin M, Pipkin A. A general theory of heat conduction with finite wave speeds. Arch Ration Mech Anal, 1968, 31: 113–126
[2] Yuan Y R. Finite difference method and analysis for three-dimensional semiconductor device of heat conduction. Sci China Ser A, 1996, 11: 21–32
[3] Yuan Y R, Wang H. Error estimates for the finite element methods of nonlinear hyperbolic equations. J Systems Sci Math Sci, 1985, 5(3): 161–171
[4] Lin Y P. A mixed boundary problem describing the propagation of disturbances in viscous media solution for quasi-linear equations. J Math Anal Appl, 1988, 135: 644–653
[5] Suveika K. Mixed problems for an equation describing the propagation of disturbances in viscous media. J Differ Equ, 1982, 19: 337–347
[6] Raynal M. On some nonlinear problems of diffusion in volterra equations//London S, Staffans O. Lecture Notes in Math, 737. Berlin, New York: Springer-Verlag, 1979
[7] Cannon J R, Lin Y. A priori L2 error estimates for finite-element methods for nonlinear diffusion equations with memory. SIAM J Numer Anal, 1990, 27(3): 595–607
[8] Cai Z, McCormick S. On the accuracy of the finite volume element method for diffusion equations on composite grid. SIAM J Numer Anal, 1990, 27(3): 636–655
[9] S¨uli E. Convergence of finite volume schemes for Poisson´s equation on nonuniform meshes. SIAM J Numer Anal, 1991, 28(5): 1419–1430
[10] Jones W P, Menziest K R. Analysis of the cell-centred finite volume method for the diffusion equation. J Comput Phy, 2000, 165(1): 45–68
[11] Bank R E, Rose D J. Some error estimates for the box methods. SIAM J Numer Anal, 1987, 24(4): 777–787
[12] Li R H, Chen Z Y, Wu W. Generalized Difference Methods for Differential Equations-Numerical Analysis of Finite Volume Methods. Monographs and Textbooks in Pure and Applied Mathematics 226. New York: Marcel Dekker Inc, 2000
[13] Blanc P, Eymerd R, Herbin R. A error estimate for finite volume methods for the Stokes equations on equilateral triangular meshes. Numer Methods Partial Differ Equ, 2004, 20(6): 907–918
[14] Li J, Chen Z X. A new stabilized finite volume method for the stationary Stokes equations. Adv Comput Math, 2009, 30(2): 141–152
[15] Li H R, Luo Z D, Li Q. Generalized difference methods for two-dimensional viscoelastic problems. Chinese J Numer Math Appl, 2007, 29(3): 251–262
[16] Li H, Sun P, Shang Y Q, Luo Z D. A fully discrete finite volume element formulation and numerical simulations for viscoelastic equations. Math Numer Sin, 2012, 34(4): 413–424
[17] Holmes P, Lumley J L, Berkooz G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge: Cambridge University Press, 1996
[18] Fukunaga K. Introduction to Statistical Recognition. New York: Academic Press, 1990
[19] Jolliffe I T. Principal Component Analysis. Berlin: Springer-Verlag, 2002
[20] Moin P, Moser R. Characteristic-eddy decomposition of turbulence in channel. J Fluid Mech, 1989, 200: 471–509
[21] Rajaee M, Karlsson S, Sirovich L. Low dimensional description of free shear flow coherent structures and their dynamical behavior. J Fluid Mech, 1994, 258: 1–29
[22] Joslin R, Gunzburger M, Nicolaides R, Erlebacher G, Hussaini M Y. A self-contained automated methodology for optimal flow control validated for transition delay. AIAA J, 1997, 35: 816–824
[23] Ly H, Tran H. Proper orthogonal decomposition for flow calculations and optimal control in a horizontal CVD reactor. Quart Appl Math, 2002, 60: 631–656
[24] Lumley J. Coherent structures in turbulence//Meyer R E. Transition and Turbulence. New York: Academic Press, 1981
[25] Aubry Y N, Holmes P, Lumley J L, Stone E. The dynamics of coherent structures in the wall region of a turbulent boundary layer. J Fluid Dyn, 1998, 192: 115–173
[26] Sirovich L. Turbulence and the dynamics of coherent structures, Part I-III. Quart Appl Math, 1987, 45: 561–590
[27] Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for parabolic problems. Numerische Mathematik, 2001, 90: 117–148
[28] Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J Numer Anal, 2002, 40: 492–515
[29] Kunisch K, Volkwein S. Control of Burgers’ equation by a reduced order approach using proper orthogonal decomposition. J Optim Theory Appl, 1999, 102: 345–371
[30] Ahlman D, S¨odelund F, Jackson J, Kurdila A, Shyy W. Proper orthogonal decomposition for timedependent lid-driven cavity flows. Numer Heat Transfer Part B, 2002, 42(4): 285–306
[31] Cao Y H, Zhu J, Luo Z D, Navon I M. Reduced order modeling of the upper tropical pacific ocean model using proper orthogonal decomposition. Comput Math Appl, 2006, 52: 1373–1386
[32] Luo Z D, Ou Q L,Wu J R, Xie Z H. A reduced finite element formulation based on POD for two-dimensional hyperbolic equation. Acta Math Sci, 2012, 32B(5): 1997–2009
[33] Luo Z D, Xie Z H, Chen J. A reduced MFE formulation based on POD for the non-stationary conductionconvection problems. Acta Math Sci, 2011, 31B(5) : 1765–1785
[34] Du J, Zhu J, Luo Z D, Navon I M. An optimizing finite difference scheme based on proper orthogonal decomposition for CVD equations. Int J Numer Methods Biom Eng, 2011, 27(1): 78–94
[35] Luo Z D, Chen J, Sun P, Yang X. Finite element formulation based on proper orthogonal decomposition for parabolic equations. Sci China Ser A: Math, 2009, 52(3): 587–596
[36] Luo Z D, Chen J, Zhu J, Navon I M. An optimizing reduced order FDS for the tropical Pacific Ocean reduced gravity model. Int J Numer Meth Fluids, 2007, 55(2): 143–161
[37] Luo Z D, Wang R W, Zhu J. Finite difference scheme based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations. Sci China Ser A: Math, 2007, 50(8): 1186–1196
[38] Luo Z D, Yang X Z, Zhou Y J. A reduced finite difference scheme based on singular value decomposition and proper orthogonal decomposition for Burgers equation. J Comput Appl Math, 2009, 229(1): 97–107
[39] Luo Z D, Zhou Y J, Yang X Z. A reduced finite element formulation based on proper orthogonal decomposition for Burgers equation. Appl Numer Math, 2009, 59(8): 1933–1946
[40] Luo Z D, Zhu J, Wang R W, Navon I M. Proper orthogonal decomposition approach and error estimation of mixed finite element methods for the tropical Pacific Ocean reduced gravity model. Comput Meth Appl Mech Eng, 2007, 196(41-44): 4184–4195
[41] Sun P, Luo Z D, Zhou YJ. Some reduced finite difference schemes based on a proper orthogonal decomposition technique for parabolic equations. Appl Numer Math, 2010, 60: 154–164
[42] Wang R W, Zhu J, Luo Z D, Navon I M. An Equation-Free Reduced Order Modeling Approach to Tropic Pacific Simulation. Advances in Geosciences Book Series. World Scientific Publishing, 2007
[43] Luo Z D, Xie Z H, Shang Y Q, Chen J. A reduced finite volume element formulation and numerical simulations based on POD for parabolic equations. J Comput Appl Math, 2011, 235(8): 2098–2111
[44] Luo Z D, Li H, Zhou Y J, Xie Z H. A reduced FVE formulation based on POD method and error analysis for two-dimensional viscoelastic problem. J Math Anal Appl, 2012, 385(1): 371–383
[45] Adams R A. Sobolev Spaces. New York: Academic Press, 1975
[46] Luo Z D. Mixed Finite Element Methods and Applications. Beijing: Science Press, 2006
[47] Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. New York: Springer-Verlag, 1991
[48] Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam, New York: North-Holland, 1978
[49] Rudin W. Functional and Analysis. 2nd ed. McGraw-Hill Companies Inc, 1973
[50] Temam R. Navier-Stokes Equations. 3rd ed. Amsterdam, New York: North-Holland, 1984 |