[1] Ciarlet P G. The Finite Element Method for Elliptic Problems. North-Holland: Amsterdam, 1978
[2] Ainsworth M, Oden J T. A Posteriori Error Estimation in Finite Element Analysis. New York: Pure and Applied Mathematics. Wiley-Interscience. John Wiley Sons, 2000
[3] Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. New York: Springer, 1991
[4] Brenner S C, Scott L R. The Mathematical Theory of Finite Element Methods. New York: Springer-Verlag, 1994
[5] Apel T. Anisotropic Finite Element: Local Estimates and Applications. Stuttgart: Teubner, 1999
[6] Chen S C, Xiao L C. Interpolation theory of anisotropic finite elements and applications. Science in China Series A: Mathematics, 2008, 51(8): 1361–1375
[7] Cao W. On the error of linear interpolation and the orientation, aspect ratio, and internal angles of a triangle. SIAM J Numer Anal, 2005, 43: 19–40
[8] Babuska I, Aziz A K. On the angle condition in the finite element method. SIAM J Numer Anal, 1976, 13: 214-226
[9] Arbenz P. Computable finite element error bounds for Poisson’s equation. IMA J Numer Anal, 1982, 2: 475–479
[10] Barnhill R E, Brown J H, Mitchell A R. Acomparison of finite element error bounds for Poisson´s equation. IMA J Numer Anal, 1981, 1: 95–103
[11] Kikuchi F, Liu X. Estimation of interpolation error constants for the P0 and P1 triangular finite elements. Comput Methods Appl Mech Engrg, 2007, 196: 3750–3758
[12] Siganevich G L. On the optimal estimation of error of the linear interpolation on a triangle of functions from W2 2 (T) (in Russian). Doklady Akademii Nauk SSSR, 1988, 300(4): 811–814
[13] Kikuchi F, Liu X. Determination of the Babuska-Aziz Constant for the Linear Triangular Finite Element. Japan J Indust Appl Math, 2006, 23(1): 75–82
[14] Acosta G, Dur´an R G. Error estimates for Q1 isoparametric elements satisfying a weak angle condition. SIAM J Numer Anal, 2000, 38: 1073–1088
[15] Mao S P, Shi Z C. On the interpolation error estimates for Q1 quadrilateral finite elements. SIAM J Numer Math, 2008, 47: 467–486
[16] Mao S P, Shi Z C. Explicit Error Estimates for Mixed and Nonconforming Finite Elements. Journal of Computational Mathematics, 2009, 27(4): 425–440
[17] Marini L D. An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method. SIAM J Numer Math, 1985, 22: 493–496
[18] Maugeri A, Palagachev D K, Softova L G. Elliptic and Parabolic Equation with Discontinuous Coefficient. Berlin: Wiley-Vch, 2000
[19] Miranda C. Partial Differential Equations of Elliptic Type. New York: Springer, 1979
[20] Barnhill R E, Wilcox C H. Computable error bounds for finite element approximations to the Dirichlet problem. Rocky Mountain J Math, 1982, 12(3): 459–470
[21] Chen S C, Zhao Y C, Shi D Y. Anisotropic interpolations with application to nonconforming elements. Applied Numerical Mathematics 2004, 49: 135–152
[22] Wilson E L, Taylor R L, Doherty W P, Ghaboussi J. Incompatible displacement methods//Fenves S J. Numerical and Computer Methods in Structural Mechanics. New York: Academic Press, 1973
[23] Chen H, Sun J. The Bounds of Constant Factors in the Inverse Inequality of a Finite Element Space (In Chinese). Journal of Shandong Normal University (Natural Science), 1998, 13(3): 241–243
[24] Payne L E, Weinberger H F. An optimal Poincar´e inequality for convex domains. Arch Ration Mech An, 1960, 5: 286–292
[25] Bebendorf M. A note on the Poincar´e inequality for convex domains. Zeitschrift Analysis und ihre Anwen-dungen, 2003, 22: 751–756 |