[1] Ewing R E. The Mathematics of Reservoir Simulation. Philadelphia: SIAM, 1983
[2] Bredehoeft J D, Pinder G F. Digital analysis of areal flow in multiaquifer groundwater systems: A quasi-three-dimensional model. Water Resources Research, 1970, 6(3): 883--888
[3] Don W, Emil O F. An iterative quasi-three-dimensional finite element model for heterogeneous multiaquifer systems. Water Resources Research, 1978, 14(5): 943--952
[4] Ungerer P, et al. Migration of Hydrocarbon in Sedimentary Basins. Paris: Editions Techniq, 1987: 414--455
[5] Ungerer P. Fluid flow, hydrocarbon generation and migration. AAPG Bull, 1990, 74(3): 309--335
[6] Douglas Jr J, Russell T F. Numerical method for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J Numer Anal, 1982, 19(5): 871--885
[7] Douglas Jr J. Finite difference methods for two-phase incompressible flow in porous media. SIAM J Numer Anal, 1983, 20(4): 681--696
[8] Bermudez A, Nogueiras M R, Vazquez C. Numerical analysis of convection-diffusion-reaction problems with higher order
characteristics/finite elements. Part I: time diseretization. SIAM J Numer Anal, 2006, 44(5): 1829--1853
[9] Bermudez A, Nogueriras M R, Vazquez C. Numerical analysis of convection-diffusion-reaction problems with higher order
characteristics/finite elements. Part II: fully diseretized scheme and quadratare fomulas. SIAM J Numer Anal, 2006, 44(5):1854--1876.
[10] Peaceman D W. Fundamental of Numerical Reservoir Simulation. Amsterdam: Elsevier, 1980
[11] Ewing R E, Lazarov R D, Vassilev A T. Finite difference scheme for parabolic problems on a composite grids with refinement in time and space. SIAM J Numer Anal, 1994, 31(6): 1605--1622
[12] Lazarov R D, Mischev I D, Vassilevski P S. Finite volume methods for convection-diffusion problems. SIAM J Numer Anal, 1996, 33(1): 31--55
[13] Marchuk G I. Splitting and alternating direction method//Ciarlet P G, Lions J L, eds. Handbook of Numerical Analysis. Paris: Elesevior Science Publishers, B V, 1990: 197--460
[14] Yuan Y R. The upwind finite difference fractional steps method for combinatorial system of dynamics of fluids in porous media and its application. Science in China, Series A, 2002, 45(5): 578--593.
[15] Yuan Y R. The finite difference method for the three-dimensional nonlinear coupled system of dynamics of fluids in porous media. Science in China, Series A, 2006, 49(2): 185--211
[16] Yuan Y R. The modified characteristic finite difference fractional steps method for nonlinear coupled system of multilayer fluid dynamics in porous media. Acta Mathematica Scientia, 2009, 29A(4): 858--872
[17] Ewing R E. Mathematical Modeling and Simulation of Multiphase Flow in Porous Media. Numerical Treatment of Multiphase Flows in Porous Media, Lecture Notes in Physics, Vol 552. New York: Springer-verlag, 2000: 43--57
[18] Yuan Y R, Han Y J. Numerical simulation of migration-accumulation of oil resources. Comput Geosi, 2008, 12: 153--162
[19] Yuan Y R, Han Y J. Numerical simulation and application of three-dimensional oil resources migration-accumulation of fluid
dynamics in porous media. Science in China, Series G, 2008, 51(8): 1144--1163
[20] Samarskii A A. Introduction to the Theory Difference Schemes. Moscow: Nauka, 1971 (Russion)
[21] Marchuk G I. Method of Numerical Mathematics. New York: Springer-Verlag, 1982
[22] Yanenko N N. The Method of Fractional Steps. New York: Springer-Verlag, 1971
[23] Yuan Y R. The characteristic finite difference fractional steps methods for compressible two-phase displacement problem.
Science in China, Series A, 1999, 42(1): 48--57
[24] Samarskii A A, Andreev B B. Finite Difference Methods for Elliptic Equation. Beijing: Science Press, 1984
[25] Yuan Y R. Characteristic finite difference method for moving boundary value problem of numerical simulation of oil deposit. Science in China, Series A, 1994, 37(12): 1442--1453
[26] Chen G N. Matrix Theory and Application. Beijing: Science Press, 2007 |