[1] Nicolaides R A. Analysis and convergence of the MAC scheme II: Navier-Stokes equations. SIAM J Numer Anal, 1992, 65(213): 29--44
[2] Girault V, Raviart P A. Finite Element Method for Navier-Stokes Equations: Theory and Algorithms. New York: Springer-Verlag, 1986
[3] Temam R. Navier-Stokes Equation, Theory and Numerical Analysis. Amstedam, New York: North-Hoolland, 1984
[4] Thomasset F. Implementation of Finite Element Methods for Navier-Stokes Equations. Berlin: Springer, 1981
[5] Eymard R, Herbin R. A staggered finite volume scheme on general meshes for the Navier-Stokes Equations in two space dimensions. Int J Finite Volumes, 2005, 2(1) (electronic)
[6] Douglas J Jr, Santos J E, Sheen D, Ye X. Nonconforming Galerkin methods based on quadrilateral elements for second order
elliptic problems. RAIRO Math Model Anal Numer, 1999, 33(4): 747--770
[7] Crouzeix M, Raviart P A. Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Numer Anal, 1973, 7(R-3): 33--76
[8] Rannacher R, Turek S. Simple nonconforming quadrilateral Stokes element. Numer Meth PDE, 1992, 8(97): 97--111
[9] Cai Z Q, Douglas J Jr, Ye X. A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations. Calcolo, 1999, 36(4): 215--232
[10] Li K T, Huang A X, Huang Q H. The Finite Element Methods and Applications(II). Xi'an: Xi'an Jiaotong University Press, 1987
[11] Han H D. Nonconforming elements in the mixed finite element method. J Comput Math, 1984, 2(3): 223--233
[12] Adams R A. Sobolev Spaces. New York: Academic Press, 1975
[13] Li K T, Zhou L. Finite element nonlinear Galerkin methods for penalty Navier-Stokes equations. Math Numer Sinic, 1995, 17(4): 360--380
[14] Shi D Y, Ren J C. Nonconforming mixed finite element method for the stationary Conduction-Convection problem. Inter J Numer Anal Modeling, 2009, 6(2): 293--310
[15] Ciarlet P G. The Finite Element Method for Elliptic Problems. Amstedam, New York: North-Hoolland, 1978
[16] Apel T, Nicaise S, Schp\"{o}berl L. Crouzeix-Raviart type finite elements on anisotropic meshes. Numer Math, 2001, 89(2): 193--223
[17] Ming P B. Nonconforming elements vs locking problem
[Ph D Thesis]. Beijing: Institute of Computational Mathematics, CAS, 1999
[18] Hu J. Quadrilateral locking free elements in elasticity
[Ph D Thesis]. Beijing: Institute of Computational Mathematics, CAS, 2004
[19] Shi D Y, Mao S P, Chen S C. An anisotropic nonconforming finite element with some superconvergence results. J Comput Math, 2005, 23(3): 261--274
[20] Lin Q, Tobiska L, Zhou A H. Superconvergence and extrapolation of nonconforming low order elements applied to the Poisson equation. IMA J Numer Anal, 2005, 25(1): 160--181
[21] Lee C O, Lee J, Sheen D. A locking-free nonconforming finite element method for planar linear elasticity. Advances Comput Math, 2003, 19(1--3): 277--291
[22] Wang L H, Qi H. On Locking-free finite element schemes for the pure displacement boundary value problem in the planar linear elasticity. Math Numer Sinica, 2002, 24(2): 243--256
[23] Shi D Y, Mao S P, Chen S C. A Locking-free anisotropic nonconforming finite element for planar linear elasticity problem. Acta Mathematica Scientia, 2007, 27B(1): 193--202
[24] He Y N, Wang A W. A simplified two-level method for the steady Navier-Stokes equations. Comput Methods Appl Mech Engrg, 2008, 197(17/18): 1568--1576
|