[1] Alonso A. Error estimators for mixed methods. Numer Math, 1996, 74: 385–395
[2] Braess D, Verfurth R. A posteriori error estimators for the Raviart-Thomas element. SIAM J Numer Anal, 1996, 33: 2431–2444
[3] Carstensen C. A posteriori error estimate for the mixed finite element method. Math Comp, 1997, 66: 465–476
[4] Chen S C, Chen H R. New mixed element schemes for second order elliptic problem (in Chinese). Mathematica
Numerica Sinica, 2010, 32(2): 213–218
[5] Ciarlet P G. The Finite Method for Elliptic Problem. Amsterdam: North-Holland, 1978
[6] Clement P. Approximation by finite element functionsusing local regularization. RAIRO Anal Numer, 1975, R-2: 77–84
[7] Creuse E, Kunert G, Nicaise S. A posteriori error estimation for the stokes problem: Anisotropic and isotropic discretizations. Math Models Methods Appl Sci, 2004, 14: 1297–1341
[8] Kunert G. A Posteriori Error Estimation for Anisotropic Tetrahedral and Triangular Finite Element Meshes. Berlin: Logos Verlag, 1999
[9] Luo Z D. Mixed Finite Element Methods and Applications (in Chinese). Beijing: Chinese Science Press, 2006
[10] Luo Z D. Analysis of some mixed finite elements methods for second order elliptic equations (in Chinese). Math Appl, 1992, 5(4): 26–31
[11] Luo Z D. Mixed finite element estimates for second order elliptic problems (in Chinese). Acta Math Appl Sin, 1993, 16(4): 473–476
[12] Nicaise S, Creuse E. Isotropic and anisotropic a posteriori error estimation of the mixed finite element method for second order operators in divergence form. Elect Tran Numer Anal, 2006, 23: 38–62
[13] Raviart P A, Thomas J M. A Mixed Finite Element Method for Second Order Elliptic Problems. Lecture Notes in Math 606. Berlin: Springer-Verlag, 1977: 292–315
[14] Siebert K G. An a posteriori error estimator for anisotropic refinement. Numer Math, 1996, 73(3): 373–398
[15] Verf¨urth R. A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner, Chichester; Stuttgart, 1996
[16] Zhao J K, Chen S C. Explicit error estimate for the nonconforming Wilson´s element. Acta Math Sci, 2013, 33B(3): 839–846 |