[1] Dupont T. L2 error estimates for Galerkin methods for second order hyperbolic equations. SIAM J Numer Anal, 1973, 10: 880–889
[2] Baker G A. Error estimates for the finite element methods for second order hyperbolic equations. SIAM J Numer Anal, 1976, 13: 564–576
[3] Zhang J, Yang D. A splitting positive definite mixed element method for second-order hyperbolic equations. Numer Methods PDEs, 2009, 25(3): 622–636
[4] Holmes P, Lumley J L, Berkooz G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge: Cambridge University Press, 1996
[5] Fukunaga K. Introduction to Statistical Recognition. New York: Academic Press, 1990
[6] Jolliffe I T. Principal Component Analysis. Berlin: Springer–Verlag, 2002
[7] Selten F. Baroclinic empirical orthogonal functions as basis functions in an atmospheric model. J Atmos Sci, 1997, 54: 2100–2114
[8] Berkooz G, Holmes P, Lumley J L. The proper orthogonal decomposition in analysis of turbulent flows. Annual Review Fluid Mech, 1993, 25: 539–575
[9] Cazemier W, Verstappen RW C P, Veldman A E P. Proper orthogonal decomposition and low–dimensional models for driven cavity flows. Phys Fluids, 1998, 10: 1685–1699
[10] Ly H V, Tran H T. Proper orthogonal decomposition for flow calculations and optimal control in a horizontal CVD reactor. Quart Appl Math, 2002, 60: 631–656
[11] Sirovich L. Turbulence and the dynamics of coherent structures: Part I-III. Quart Appl Math, 1987, 45: 561–590
[12] Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for parabolic problems. Numer Math, 2001, 90: 117–148
[13] Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J Numer Anal, 2002, 40: 492–515
[14] Kunisch K, Volkwein S. Control of Burgers’ equation by a reduced order approach using proper orthogonal decomposition. J Optim Theory Appl, 1999, 102: 345–371
[15] Ahlman D, S¨odelund F, Jackson J, Kurdila A, Shyy W. Proper orthogonal decomposition for timedependent lid-driven cavity flows. Numer Heat Tran Part B, 2002, 42: 285–306
[16] Luo Z D, Zhu J, Wang R W, Navon I M. Proper orthogonal decomposition approach and error estimation of mixed finite element methods for the tropical Pacific Ocean reduced gravity model. Comp Methods Appl Mech Engin, 2007, 196(41/44): 4184–4195
[17] Luo Z D, Chen J, Zhu J, Navon I M. An optimizing reduced order FDS for the tropical Pacific Ocean reduced gravity model. I J Numer Methods Fluids, 2007, 55(2): 143–161
[18] Luo Z D, Ou Q L, Wu J R, Xie Z H. A reduced FE formulation based on POD for two-dimensional hyperbolic equation. Acta Mathematica Scientia, 2012, 32(5): 1997–2009
[19] Luo Z D, Wang R W, Zhu J. Finite difference scheme based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations. Sci China Ser A: Math, 2007, 50(8): 1186–1196
[20] Luo Z D, Du J, Xie Z H, Guo Y. A reduced stabilized mixed finite element formulation based on proper orthogonal decomposition for the no-stationary Navier-Stokes equations. International Journal for Numerical Methods in Engineering, 2011, 88(1): 31–46
[21] Luo Z D, Chen J, Sun P, Yang X. Finite element formulation based on proper orthogonal decomposition for parabolic equations. Sci China Ser A: Math, 2009, 52(3): 587–596
[22] Luo Z D, Xie Z H, Shang Y Q, Chen J. A reduced finite volume element formulation and numerical simulations based on POD for parabolic equations. Journal of Computational and Applied Mathematics, 2011, 235(8): 2098–2111
[23] Tian X, Xie Z, Sun Q. A POD-based ensemble four dimensional variational assimilation method. Tellus, 2011, 63A: 805–816
[24] Adams R A. Sobolev Spaces. New York: Academic Press, 1975
[25] Luo Z D. Mixed Finite Element Methods and Applications. Beijing: Chinese Science Press, 2006
[26] Ciarlet P G. The Finite Element Method for Elliptic Problems. North–Holland: Amsterdam, 1978
[27] Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. New York: Springer–Verlag, 1991
[28] Raviart P A, Thomas J M. A mixed finite element method for 2nd order elliptic problems. Mathematical aspects of finite element methods. Lecture Notes in Math. Berlin: Springer Verlag, 1977, 606: 292–31 |