Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (3): 1081-1104.doi: 10.1007/s10473-023-0306-1
Previous Articles Next Articles
Xueke Pu, Wenli Zhou†
Received:
2021-09-18
Revised:
2022-10-17
Online:
2023-06-25
Published:
2023-06-06
Contact:
† Wenli Zhou, E-mail: wywlzhou@163.com
About author:
Xueke Pu, E-mail: puxueke@gmail.com
Supported by:
Xueke Pu, Wenli Zhou. ON THE RIGOROUS MATHEMATICAL DERIVATION FOR THE VISCOUS PRIMITIVE EQUATIONS WITH DENSITY STRATIFICATION*[J].Acta mathematica scientia,Series B, 2023, 43(3): 1081-1104.
[1] Azérad P, Guillén F.Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics. SIAM J Math Anal, 2001, 33(4): 847-859 [2] Bardos C, Lopes Filho M C, Niu D, et al. Stability of two-dimensional viscous incompressible flows under three-dimensional perturbations and inviscid symmetry breaking. SIAM J Math Anal, 2013, 45(3): 1871-1885 [3] Bresch D, Guillén-González F, Masmoudi N, Rodríguez-Bellido M A. On the uniqueness of weak solutions of the two-dimensional primitive equations. Differ Integral Equ, 2003, 16(1): 77-94 [4] Cao C, Ibrahim S, Nakanishi K, Titi E S.Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics. Commun Math Phys, 2015, 337(2): 473-482 [5] Cao C, Li J, Titi E S.Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity. Arch Ration Mech Anal, 2014, 214(1): 35-76 [6] Cao C, Li J, Titi E S.Global well-posedness of strong solutions to the 3D primitive equations with horizontal eddy diffusivity. J Differ Equ, 2014, 257(11): 4108-4132 [7] Cao C, Li J, Titi E S.Global well-posedness of the three-dimensional primitive equations with only hori- zontal viscosity and diffusion. Commun Pure Appl Math, 2016, 69(8): 1492-1531 [8] Cao C, Li J, Titi E S.Strong solutions to the 3D primitive equations with horizontal dissipation: near H1 initial data. J Funct Anal, 2017, 272(11): 4606-4641 [9] Cao C, Li J, Titi E S.Global well-posedness of the 3D primitive equations with horizontal viscosity and vertical diffusivity. Phys D, 2020, 412: 132606 [10] Cao C, Titi E S.Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann Math, 2007, 166(1): 245-267 [11] Cao C, Titi E S.Global well-posedness of the 3D primitive equations with partial vertical turbulence mixing heat diffusion. Commun Math Phys, 2012, 310(2): 537-568 [12] Cao C, Titi E S.Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model. Commun Pure Appl Math, 2003, 56(2): 198-233 [13] Fang D, Han B.Global well-posedness for the 3D primitive equations in anisotropic framework. J Math Anal Appl, 2020, 484(2): 123714 [14] Furukawa K, Giga Y, Hieber M, et al.Rigorous justification of the hydrostatic approximation for the primitive equations by scaled Navier-Stokes equations. Nonlinearity, 2020, 33(12): 6502-6516 [15] Giga Y, Gries M, Hieber M, et al.The hydrostatic Stokes semigroup and well-posedness of the primitive equations on spaces of bounded functions. J Funct Anal, 2020, 279(3): 108561 [16] Han-Kwan D, Nguyen T.Ill-posedness of the hydrostatic Euler and singular Vlasov equations. Arch Ration Mech Anal, 2016, 221(3): 1317-1344 [17] Hieber M, Hussein A, Kashiwabara T.Global strong Lp well-posedness of the 3D primitive equations with heat and salinity diffusion. J Differ Equ, 2016, 261(12): 6950-6981 [18] Hieber M, Kashiwabara T.Global strong well-posedness of the three dimensional primitive equations in Lp-spaces. Arch Ration Mech Anal, 2016, 221(3): 1077-1115 [19] Ibrahim S, Lin Q, Titi E S.Finite-time blowup and ill-posedness in Sobolev spaces of the inviscid primitive equations with rotation. J Differ Equ, 2021, 286: 557-577 [20] Ju N.On H2 solutions and z-weak solutions of the 3D primitive equations. Indiana Univ Math J, 2017, 66(3): 973-996 [21] Kobelkov G M.Existence of a solution in the large for the 3D large-scale ocean dynamics equations. C R Math Acad Sci Paris, 2006, 343(4): 283-286 [22] Kukavica I, Pei Y, Rusin W, Ziane M.Primitive equations with continuous initial data. Nonlinearity, 2014, 27(6): 1135-1155 [23] Kukavica I, Ziane M.The regularity of solutions of the primitive equations of the ocean in space dimension three. C R Math Acad Sci Paris, 2007, 345(5): 257-260 [24] Kukavica I, Ziane M.On the regularity of the primitive equations of the ocean. Nonlinearity, 2007, 20(12): 2739-2753 [25] Li J, Titi E S.The primitive equations as the small aspect ratio limit of the Navier-Stokes equations: rigorous justification of the hydrostatic approximation. J Math Pures Appl, 2019, 124: 30-58 [26] Li J, Titi E S.Existence and uniqueness of weak solutions to viscous primitive equations for a certain class of discontinuous initial data. SIAM J Math Anal, 2017, 49(1): 1-28 [27] Li J, Titi E S, Yuan G.The primitive equations approximation of the anisotropic horizontally viscous Navier-Stokes equations. J Differ Equ, 2022, 306: 492-524 [28] Li J, Yuan G.Global well-posedness of z-weak solutions to the primitive equations without vertical diffu- sivity. J Math Phys, 2022, 63(2): 021501 [29] Lions J L, Temam R, Wang S.New formulations of the primitive equations of atmosphere and applications. Nonlinearity, 1992, 5(2): 237-288 [30] Lions J L, Temam R,Wang S.On the equations of the large scale ocean. Nonlinearity, 1992, 5(5): 1007-1053 [31] Lions J L, Temam R, Wang S.Mathematical theory for the coupled atmosphere-ocean models. J Math Pures Appl, 1995, 74(2): 105-163 [32] Majda A.Introduction to PDEs and Waves for the Atmosphere and Ocean. Providence, RI: American Mathematical Society, 2003 [33] Pedlosky J. Geophysical Fluid Dynamics. New York: Springer, 1987 [34] Pu X, Zhou W. Rigorous derivation of the full primitive equations by the scaled Boussinesq equations with rotation. Bull Malays Math Sci Soc, 2023, 46(3): Art 88 [35] Renardy M.Ill-posedness of the hydrostatic Euler and Navier-Stokes equations. Arch Ration Mech Anal, 2009, 194(3): 877-886 [36] Robinson J C, Rodrigo J L, Sadowski W.The Three-Dimensional Navier-Stokes Equations: Classical Theory. Cambridge: Cambridge University Press, 2016 [37] Seidov D.An intermediate model for large-scale ocean circulation studies. Dynam Atmos Oceans, 1996, 25(1): 25-55 [38] Tachim Medjo T.On the uniqueness of z-weak solutions of the three-dimensional primitive equations of the ocean. Nonlinear Anal Real World Appl, 2010, 11(3): 1413-1421 [39] Temam R.Navier Stokes Equations: Theory and Numerical Analysis. Amsterdam: North-Holland Pub- lishing Company, 1977 [40] Vallis G K.Atmospheric and Oceanic Fluid Dynamics. Cambridge: Cambridge University Press, 2006 [41] Washington W M, Parkinson C L.An Introduction to Three Dimensional Climate Modeling. Oxford: Oxford University Press, 1986 [42] Wong T K.Blowup of solutions of the hydrostatic Euler equations. Proc Amer Math Soc, 2015, 143(3): 1119-1125 |
[1] | Duong Viet Thong, Vu Tien Dung. A RELAXED INERTIAL FACTOR OF THE MODIFIED SUBGRADIENT EXTRAGRADIENT METHOD FOR SOLVING PSEUDO MONOTONE VARIATIONAL INEQUALITIES IN HILBERT SPACES* [J]. Acta mathematica scientia,Series B, 2023, 43(1): 184-204. |
[2] | Xueting Jin, Yuelong Xiao, Huan Yu. GLOBAL WELL-POSEDNESS OF THE 2D BOUSSINESQ EQUATIONS WITH PARTIAL DISSIPATION [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1293-1309. |
[3] | Nguyen Xuan LINH, Duong Viet THONG, Prasit CHOLAMJIAK, Pham Anh TUAN, Luong Van LONG. STRONG CONVERGENCE OF AN INERTIAL EXTRAGRADIENT METHOD WITH AN ADAPTIVE NONDECREASING STEP SIZE FOR SOLVING VARIATIONAL INEQUALITIES [J]. Acta mathematica scientia,Series B, 2022, 42(2): 795-812. |
[4] | Mehdi MOHAMMADI, G. Zamani ESKANDANI. A STRONG CONVERGENCE THEOREM FOR QUASI-EQUILIBRIUM PROBLEMS IN BANACH SPACES [J]. Acta mathematica scientia,Series B, 2022, 42(1): 221-232. |
[5] | Quansen JIU, Fengchao WANG. LOCAL EXISTENCE AND UNIQUENESS OF STRONG SOLUTIONS TO THE TWO DIMENSIONAL NONHOMOGENEOUS INCOMPRESSIBLE PRIMITIVE EQUATIONS [J]. Acta mathematica scientia,Series B, 2020, 40(5): 1316-1334. |
[6] | Yekini SHEHU. SINGLE PROJECTION ALGORITHM FOR VARIATIONAL INEQUALITIES IN BANACH SPACES WITH APPLICATION TO CONTACT PROBLEM [J]. Acta mathematica scientia,Series B, 2020, 40(4): 1045-1063. |
[7] | Hanbing LIU, Haijun XIAO. BOUNDARY FEEDBACK STABILIZATION OF BOUSSINESQ EQUATIONS [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1881-1902. |
[8] | Tao TAO, Liqun ZHANG. HÖLDER CONTINUOUS SOLUTIONS OF BOUSSINESQ EQUATIONS [J]. Acta Mathematica Scientia, 2018, 38(5): 1591-1616. |
[9] | Yekini SHEHU, Olaniyi. S. IYIOLA. CONVERGENCE OF HYBRID VISCOSITY AND STEEPEST-DESCENT METHODS FOR PSEUDOCONTRACTIVE MAPPINGS AND NONLINEAR HAMMERSTEIN EQUATIONS [J]. Acta mathematica scientia,Series B, 2018, 38(2): 610-626. |
[10] | Jing ZHAO, Shengnan WANG. VISCOSITY APPROXIMATION METHODS FOR THE SPLIT EQUALITY COMMON FIXED POINT PROBLEM OF QUASI-NONEXPANSIVE OPERATORS [J]. Acta mathematica scientia,Series B, 2016, 36(5): 1474-1486. |
[11] | Y. SHEHU, O. T. MEWOMO, F. U. OGBUISI. FURTHER INVESTIGATION INTO APPROXIMATION OF A COMMON SOLUTION OF FIXED POINT PROBLEMS AND SPLIT FEASIBILITY PROBLEMS [J]. Acta mathematica scientia,Series B, 2016, 36(3): 913-930. |
[12] | Jinfang TANG, Shih-sen CHANG, Min LIU. GENERAL SPLIT FEASIBILITY PROBLEMS FOR TWO FAMILIES OF NONEXPANSIVE MAPPINGS IN HILBERT SPACES [J]. Acta mathematica scientia,Series B, 2016, 36(2): 602-613. |
[13] | Zhendong LUO. A STABILIZED MIXED FINITE ELEMENT FORMULATION FOR THE NON-STATIONARY INCOMPRESSIBLE BOUSSINESQ EQUATIONS [J]. Acta mathematica scientia,Series B, 2016, 36(2): 385-393. |
[14] | YE Zhuan. A NOTE ON GLOBAL WELL-POSEDNESS OF SOLUTIONS TO BOUSSINESQ EQUATIONS WITH FRACTIONAL DISSIPATION [J]. Acta mathematica scientia,Series B, 2015, 35(1): 112-120. |
[15] | LIU San-Yang, HE Hui-Min, CHEN Ru-Dong. APPROXIMATING SOLUTION OF 0 ∈T(x) FOR AN H-MONOTONE OPERATOR IN HILBERT SPACES [J]. Acta mathematica scientia,Series B, 2013, 33(5): 1347-1360. |
|