Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (3): 1161-1174.doi: 10.1007/s10473-023-0310-5
Previous Articles Next Articles
Bo Chen1, Zhengmao Chen2, Junhui Xie3,†
Received:
2021-11-11
Revised:
2022-10-18
Online:
2023-06-25
Published:
2023-06-06
Contact:
† Junhui Xie, E-mail: smilexiejunhui@hotmail.com
About author:
Bo Chen, E-mail: BoChenmath@outlook.com; Zhengmao Chen, E-mail: zhengmaochen@aliyun.com
Supported by:
Bo Chen, Zhengmao Chen, Junhui Xie. PROPERTIES OF SOLUTIONS TO A HARMONIC-MAPPING TYPE EQUATION WITH A DIRICHLET BOUNDARY CONDITION*[J].Acta mathematica scientia,Series B, 2023, 43(3): 1161-1174.
[1] Alvarez O, Lasry J M, Lions P L.Convexity viscosity solutions and state constraints. J Math Pures Appl, 1997, 76(3): 265-288 [2] Amann H, Crandall M G.On some existence theorems for semi-linear elliptic equations. Indiana Univ Math J, 1978,27: 779-790 [3] Brezis H, Turner R.On a class of superlinear elliptic problems. Comm Partial Differential Equations, 1977, 2(6): 601-614 [4] Buffa A, Costabel M, Dauge M.Anisotropic regularity results for Laplace and Maxwell operators in a polyhedron. C R Acad Sci Paris Ser I, 2003, 336(1): 565-570 [5] Caffarelli L, Friedman A.Convexity of solutions of some semilinear elliptic equations. Duke Math J, 1985, 52(2): 431-456 [6] Chaira A, Touhami S. Riesz bases for [7] Chen C Q, Hu B W.A microscopic convexity principle for spacetime convex solutions of fully nonlinear parabolic equations. Acta Math Sin, 2013, 29(4): 651-674 [8] Coffman C V.On the positive solutions of boundary-value problem for a class of nonlinear differential equation. J Differential Equations, 1967, 3(1): 92-111 [9] Colesanti A.Brunn-Minkowski inequalities for variational functionals and related problems. Adv Math, 2005, 194(1): 105-140 [10] Colesanti A, Salani P.The Brunn-Minkowski inequality for p-capacity of convex bodies. Math Ann, 2003, 327: 459-479 [11] Dai Q Y, Gu Y G.Positive solutions for non-homogeneous semilinear elliptic equations with data that changes sigh. Proc Roy Soc Edinburgh Sect A, 2003, 133(2): 297-306 [12] Damascelli L, Grossi M, Pacella F.Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle. Ann Inst H Poincaré Anal Non Linéaire, 1999, 16(5): 631-652 [13] Dong R, Li D S.Uniform Hüolder estimates for a type of nonlinear elliptic equations with rapidly oscillatory coefficients. Acta Math Sci, 2017, 37(6): 1841-1860 [14] Figueiredo D G, Girardi M, Matzeu M.Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques. Differential Integral Equations, 2004, 17(1/2): 119-126 [15] Gidas B, Spruck J.A priori bounds for positive solution of nonlinear elliptic equations. Comm Partial Differential Equations, 1981, 6(8): 883-901 [16] Greco D.Nuove formole integrali di maggiorazione per le soluzioni di un'equazione lieare di tipo ellittico ed applicazioni alla teoria del potenzile. Ricerche di Mat, 1956, 5: 126-149 [17] Guo C Y, Xiang C L.Regularity of p-harmonic mappings into NPC spaces. Acta Math Sci, 2021, 41B(2): 633-645 [18] Han Q, Lin F H.Elliptic Partial Differential Equations. Providence, RI: American Mathematical Society, 2011 [19] Kawohl B, Payne L.A remark on N. Korevaar's concavity maximum principle and on the asymptotic uniqueness of solutions to the plasma problem. Math Methods Appl Sci, 1986, 8(1): 93-101 [20] Kennington A.Power comcavity and boundary value problems. Indiana Univ Math J, 1985, 34(3): 687-704 [21] Koshelev A I.On the boundedness in [22] Korevaar N J.Capillary surface convexity above convex domains. Indiana Univ Math J, 1983, 32(1): 73-81 [23] Korevaar N J, Lewis J.Convex solutions of certain elliptic equations have constant rank Hessians. Arch Ration Mech Anal, 1987, 97(1): 19-32 [24] Leray J, Schauder J.Topologie et équations fonctionelles. Ann Sci école Norm Sup, 1934, 51(3): 45-78 [25] Li Y Y.Existence of many positive solutions of semilinear elliptic equations on annulus. J Differential Equations, 1990, 83(2): 348-367 [26] Lin F H, Wang C Y.The Analysis of Harmonic Maps and Their Heat Flows. Singapore: World Scientific Publishing, 2008 [27] Lin C S.Uniqueness of least energy solutions to a semilinear elliptic equation in $\mathbb{R}$2. Manuscripta Math, 1994, 84(1): 13-20 [28] Salani P.A Brunn-Minkowski inequality for the Monge-Ampère eigenvalue. Adv Math, 2005, 194(1): 67-86 [29] Werner P.Regularity properties of the Laplace operator with respect to electric and magnetic boundary conditions. J Math Anal Appl, 1982, 87(2): 560-602 [30] Xiang C L.Gradient estimates for solutions to quasilinear elliptic equations with critical Sobolev growth and Hardy potential. Acta Math Sci, 2017, 37(1): 58-68 [31] Ye Y H.Power convexity of a class of elliptic equations involving the Hessian operator in a 3-dimensional bounded convex domain. Nonlinear Anal, 2013, 84: 29-38 |
[1] | Zhenhai Liu, Nikolaos S. Papageorgiou. SINGULAR DOUBLE PHASE EQUATIONS* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1031-1044. |
[2] | Qing Guo, Leiga Zhao. POSITIVE SOLUTIONS WITH HIGH ENERGY FOR FRACTIONAL SCHRÖDINGER EQUATIONS* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1116-1130. |
[3] | Leilei CUI, Jiaxing GUO, Gongbao LI. THE EXISTENCE AND LOCAL UNIQUENESS OF MULTI-PEAK SOLUTIONS TO A CLASS OF KIRCHHOFF TYPE EQUATIONS* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1131-1160. |
[4] | Xuemei Zhang, Shikun Kan. SUFFICIENT AND NECESSARY CONDITIONS ON THE EXISTENCE AND ESTIMATES OF BOUNDARY BLOW-UP SOLUTIONS FOR SINGULAR p-LAPLACIAN EQUATIONS* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1175-1194. |
[5] | Hongxia Lin, Sen Liu, Heng Zhang, Ru Bai. GLOBAL REGULARITY OF 2D INCOMPRESSIBLE MAGNETO-MICROPOLAR FLUID EQUATIONS WITH PARTIAL VISCOSITY* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1275-1300. |
[6] | Mingxuan Zhu, Zaihong Jiang. THE CAUCHY PROBLEM FOR THE CAMASSA-HOLM-NOVIKOV EQUATION* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 736-750. |
[7] | Boling Guo, Yamin Xiao. THE EXISTENCE OF WEAK SOLUTIONS AND PROPAGATION REGULARITY FOR A GENERALIZED KDV SYSTEM* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 942-958. |
[8] | Hakho Hong. THE EXISTENCE OF GLOBAL SOLUTIONS FOR THE FULL NAVIER-STOKES-KORTEWEG SYSTEM OF VAN DER WAALS GAS∗ [J]. Acta mathematica scientia,Series B, 2023, 43(2): 469-491. |
[9] | Quansen Jiu, Lin Ma. GLOBAL WEAK SOLUTIONS OF COMPRESSIBLE NAVIER-STOKES-LANDAU-LIFSHITZ-MAXWELL EQUATIONS FOR QUANTUM FLUIDS IN DIMENSION THREE* [J]. Acta mathematica scientia,Series B, 2023, 43(1): 25-42. |
[10] | Narimane AISSAOUI, Wei LONG. POSITIVE SOLUTIONS FOR A KIRCHHOFF EQUATION WITH PERTURBED SOURCE TERMS [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1817-1830. |
[11] | Wenjun WANG, Zhen CHENG. LARGE TIME BEHAVIOR OF GLOBAL STRONG SOLUTIONS TO A TWO-PHASE MODEL WITH A MAGNETIC FIELD [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1921-1946. |
[12] | Myong-Hwan RI, Reinhard FARWIG. MAXIMAL $L^1$-REGULARITY OF GENERATORS FOR BOUNDED ANALYTIC SEMIGROUPS IN BANACH SPACES [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1261-1272. |
[13] | Jianghao HAO, Yajing ZHANG. ESTIMATES FOR EXTREMAL VALUES FOR A CRITICAL FRACTIONAL EQUATION WITH CONCAVE-CONVEX NONLINEARITIES [J]. Acta mathematica scientia,Series B, 2022, 42(3): 903-918. |
[14] | Ruiying WEI, Yin LI, Zheng-an YAO. THE GLOBAL EXISTENCE AND A DECAY ESTIMATE OF SOLUTIONS TO THE PHAN-THEIN-TANNER MODEL [J]. Acta mathematica scientia,Series B, 2022, 42(3): 1058-1080. |
[15] | Salvatore LEONARDI, Nikolaos S. PAPAGEORGIOU. ARBITRARILY SMALL NODAL SOLUTIONS FOR PARAMETRIC ROBIN (p,q)-EQUATIONS PLUS AN INDEFINITE POTENTIAL [J]. Acta mathematica scientia,Series B, 2022, 42(2): 561-574. |
|