Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (3): 1116-1130.doi: 10.1007/s10473-023-0308-z
Previous Articles Next Articles
Qing Guo1, Leiga Zhao2,†
Received:
2021-05-24
Revised:
2022-08-22
Online:
2023-06-25
Published:
2023-06-06
Contact:
† Leiga Zhao, E-mail: zhaoleiga@163.com
About author:
Qing Guo, E-mail: guoqing0117@163.com
Supported by:
Qing Guo, Leiga Zhao. POSITIVE SOLUTIONS WITH HIGH ENERGY FOR FRACTIONAL SCHRÖDINGER EQUATIONS*[J].Acta mathematica scientia,Series B, 2023, 43(3): 1116-1130.
[1] Alves C O, Miyagaki O H. Existence and concentration of solution for a class of fractional elliptic equation in $\mathbb{R}$N via penalization method. Calc Var Partial Differential Equations, 2016, 55: Art 47 [2] Ambrosio V.Mountain pass solutions for the fractional Berestycki-Lions problem. Adv Differential Equations, 2018, 23: 455-488 [3] Ambrosio V, d'Avenia P. Nonlinear fractional magnetic Schrüodinger equation: existence and multiplicity. J Differential Equations, 2018, 264: 3336-3368 [4] Amick C J, Toland J F.Uniqueness and related analytic properties for the Benjamin-Ono equation-a nonlinear Neumann problem in the plane. Acta Math, 1991, 167: 107-126 [5] Bahri A, Li Y Y.On the min-max procedure for the existence of a positive solution for certain scalar field equations in $\mathbb{R}$N. Rev Mat Iberoamericana, 1990, 6: 1-15 [6] Benci V, Cerami G.Positive solutions of semilinear elliptic problems in exterior domains. Arch Rat Mech Anal, 1987, 99: 283-300 [7] Caffarelli L, Silvestre L.An extension problem related to the fractional Laplacian. Comm in Part Diff Equa, 2007, 32: 1245-1260 [8] Cao D M.Positive solutions and bifurcation from essential spectrum of semilinear elliptic equation on $\mathbb{R}$N. Nonlinear Analysis TMA, 1990, 15: 1045-1052 [9] Cerami G, Passaseo D.The effect of concentrating potentials in some singularly perturbed problems. Calc Var Partial Differential Equations, 2003, 17: 257-281 [10] Cerami G, Vaira G.Positive solutions for some nonautonomous Schrüodinger-Poisson systems. J Diff Equations, 2010, 248: 521-543 [11] Chang X, Wang Z-Q.Ground state of scalar field equations involving fractional Laplacian with general nonlinearity. Nonlinearity, 2013, 26: 479-494 [12] Chen W, Li C, Li Y.A direct method of moving planes for the fractional Laplacian. Adv Math, 2017, 308: 404-437 [13] Cheng M.Bound state for the fractional Schrüodinger equation with unbounded potential. J Math Phys, 2012, 53: 043507 [14] Cho Y, Ozawa T.A note on the existence of a ground state solution to a fractional Schrüodinger equation. Kyushu J Math, 2013, 67: 227-236 [15] Dipierro S, Palatucci G, Valdinoci E.Existence and symmetry results for a Schrüodinger type problem involving the fractional Laplacian. Matematiche (Catania), 2013, 68: 201-216 [16] Évéquoz G, Fall M M.Positive solutions to some nonlinear fractional Schrüodinger equations via a min-max procedure. arXiv:1312.7068 [17] Fall M M, Valdinoci E.Uniqueness and nondegeneracy of positive solutions of (-△)s [18] Fall M M, Jarohs S.Overdetermined problems with fractional Laplacian. ESAIM Control Optim Calc Var, 2015, 21: 924-938 [19] Felmer P, Quaas A, Tan J G.Positive solutions of nonlinear Schrüodinger equation with the fractional Laplacian. Proc Roy Soc Edinburgh Sect A, 2012, 142: 1237-1262 [20] Feng B.Ground states for the fractional Schrüodinger equation. Electron J Differ Eq, 2013, 127: 1-11 [21] Frank R L, Lenzmann E.Uniqueness of non-linear ground states for fractional Laplacians in R. Acta Mathematica, 2013, 210: 261-318 [22] Frank R L, Lenzmann E, Silvestre L.Uniqueness of radial solutions for the fractional Laplacian. Commun Pure Appl Math, 2016, 69: 1671-1726 [23] He X, Zou W. Existence and concentration result for the fractional Schrüodinger equations with critical nonlinearities. Calc Var Partial Differential Equations, 2016, 55: Art 91 [24] Kwong M K.Uniqueness of positive solutions of △ [25] Jarohs S.Symmetry of solutions to nonlocal nonlinear boundary value problems in radial sets. Nonlinear Differential Equations Appl, 2016, 23(3): 1-22 [26] Jin T, Li Y, Xiong J.On a fractional Nirenberg problem, part I: Blow up analysis and compactness of solutions. J Eur Math Soc, 2014, 16: 1111-1171 [27] Laskin N.Fractional quantum mechanics and Lévy path integrals. Phys Lett A, 2000, 268: 298-305 [28] Li Q, Teng K, Wu X.Ground states for fractional Schrüodinger equations with critical growth. J Math Phys, 2018, 59: 033504 [29] Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1: 109-145, 223-283 [30] Molica Bisci G, Rădulescu V, Servadei R.Variational Methods for Nonlocal Fractional Problems. Cambridge: Cambridge University Press, 2016 [31] Nezza Di E, Palatucci G, Valdinoci E.Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136 : 521-573 [32] Niu M, Tang Z.Least energy solutions for nonlinear Schrüodinger equation involving the fractional Laplacian and critical growth. Discrete Contin Dyn Syst Ser A, 2017, 37: 3963-3987 [33] Rabinowitz P H.On a class of nonlinear Schrüodinger equations. Z Angew Math Phys, 1992 43: 270-291 [34] Shang X, Zhang J.Ground states for fractional Schrüodinger equations with critical growth. Nonlinearity, 2014, 27: 187-207 [35] Secchi S.Ground state solutions for nonlinear fractional Schrüodinger equations in $\mathbb{R}$N. J Math Phys, 2013, 54: 031501 [36] Secchi S.On fractional Schrüodinger equations in $\mathbb{R}$N without the Ambrosetti-Rabinowitz condition. Topol Method Nonl Anal, 2016, 47: 19-41 [37] Struwe M. Variational Methods.Berlin: Springer-Verlag, 1996 [38] Willem M. Minimax Theorems. Boston: Birkhüauser, 1996 [39] Yan S, Yang J, Yu X.Equations involving fractional Laplacian operator: Compactness and application. J Funct Anal, 2015, 269: 47-79 [40] Yang P, Liu J, Tang C.Ground state solutions for non-local fractional Schrodinger equations. Electron J Differ Eq, 2015, 223: 1-16 |
[1] | Zhenhai Liu, Nikolaos S. Papageorgiou. SINGULAR DOUBLE PHASE EQUATIONS* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1031-1044. |
[2] | Bo Chen, Zhengmao Chen, Junhui Xie. PROPERTIES OF SOLUTIONS TO A HARMONIC-MAPPING TYPE EQUATION WITH A DIRICHLET BOUNDARY CONDITION* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1161-1174. |
[3] | Narimane AISSAOUI, Wei LONG. POSITIVE SOLUTIONS FOR A KIRCHHOFF EQUATION WITH PERTURBED SOURCE TERMS [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1817-1830. |
[4] | Jianghao HAO, Yajing ZHANG. ESTIMATES FOR EXTREMAL VALUES FOR A CRITICAL FRACTIONAL EQUATION WITH CONCAVE-CONVEX NONLINEARITIES [J]. Acta mathematica scientia,Series B, 2022, 42(3): 903-918. |
[5] | Chunyu LEI, Jiafeng LIAO, Changmu CHU, Hongmin SUO. A NONSMOOTH THEORY FOR A LOGARITHMIC ELLIPTIC EQUATION WITH SINGULAR NONLINEARITY [J]. Acta mathematica scientia,Series B, 2022, 42(2): 502-510. |
[6] | Zhenhai LIU, Nikolaos S. PAPAGEORGIOU. ANISOTROPIC (p,q)-EQUATIONS WITH COMPETITION PHENOMENA [J]. Acta mathematica scientia,Series B, 2022, 42(1): 299-322. |
[7] | Lingjun LIU, Feilin SHI. POSITIVE SOLUTIONS OF A NONLOCAL AND NONVARIATIONAL ELLIPTIC PROBLEM [J]. Acta mathematica scientia,Series B, 2021, 41(5): 1764-1776. |
[8] | Xueliang DUAN, Gongming WEI, Haitao YANG. POSITIVE SOLUTIONS AND INFINITELY MANY SOLUTIONS FOR A WEAKLY COUPLED SYSTEM [J]. Acta mathematica scientia,Series B, 2020, 40(5): 1585-1601. |
[9] | Jinguo ZHANG, Tsing-San HSU. MULTIPLICITY OF POSITIVE SOLUTIONS FOR A NONLOCAL ELLIPTIC PROBLEM INVOLVING CRITICAL SOBOLEV-HARDY EXPONENTS AND CONCAVE-CONVEX NONLINEARITIES [J]. Acta mathematica scientia,Series B, 2020, 40(3): 679-699. |
[10] | Gongbao LI, Yahui NIU. THE EXISTENCE AND LOCAL UNIQUENESS OF MULTI-PEAK POSITIVE SOLUTIONS TO A CLASS OF KIRCHHOFF EQUATION [J]. Acta mathematica scientia,Series B, 2020, 40(1): 90-112. |
[11] | Alberto CABADA, Nikolay DIMITROV. EXISTENCE OF SOLUTIONS OF nTH-ORDER NONLINEAR DIFFERENCE EQUATIONS WITH GENERAL BOUNDARY CONDITIONS [J]. Acta mathematica scientia,Series B, 2020, 40(1): 226-236. |
[12] | Xiangqing Liu. SYMMETRY OF POSITIVE SOLUTIONS FOR THE FRACTIONAL HARTREE EQUATION [J]. Acta mathematica scientia,Series B, 2019, 39(6): 1508-1516. |
[13] | Vladas SKAKAUSKAS. SOLVABILITY OF A NONLINEAR PROBLEM ARISING IN REACTIONS OVER INHOMOGENEOUS SURFACES [J]. Acta mathematica scientia,Series B, 2019, 39(5): 1380-1396. |
[14] | Jiankai XU, Zhong TAN, Weiwei WANG, Zepeng XIONG. A NECESSARY CONDITION FOR CERTAIN INTEGRAL EQUATIONS WITH NEGATIVE EXPONENTS [J]. Acta mathematica scientia,Series B, 2019, 39(1): 284-296. |
[15] | Xiao ZHANG, Guoxing JI. SOLUTIONS TO THE SYSTEM OF OPERATOR EQUATIONS AXB=C=BXA [J]. Acta mathematica scientia,Series B, 2018, 38(4): 1143-1150. |
|