[1] Chidume C E, Mutangadura S. An example on the Mann iteration method for Lipschitz pseudocontractions. Proc Amer Math Soc, 2001, 129(8):2359-2363; MR 20022f:47104 [2] Berinde V. Iterative approximation of fixed points, Springer Verlag Series:Lecture Notes in Mathematics, 2007, 1912:ISBN 978-3-540-72233-5 [3] Berinde V. Iterative approximation of fixed points. Editura Efemeride Baia Mare, 2002 [4] Browder F E. Nonlinear mappings of nonexpansive and accretive type in Banach spaces. Bull Amer Math Soc, 1967, 73:875-882 [5] Chidume C E. Geometric properties of Banach spaces and nonlinear iterations. Springer Verlag Series:Lecture Notes in Mathematics, 2009, 1965(17):326p, ISBN 978-1-84882-189-7 [6] Cioranescu I. Geometry of Banach spaces, duality mappings and nonlinear problems. Dordrecht:Kluwer Academic, 1990 [7] Kato T. Nonlinear semigroups and evolution equations. J Math Soc Japan, 1967, 19:508-520 [8] Reich S. Strong convergence theorems for resolvents of accretive operators in Banach spaces. J Math Anal Appl, 1994, 183:118-120 [9] Chidume C E, Shehu Y. Strong convergence theorems for the approximation of fixed points of demicontinuous pseudocontractive mappings. J Appl Anal, 2013, 19:213-229 [10] Ceng L C, Petrusel A, Yao J -C. Strong convergence of modified implicit iterative algorithms with perturbedmappings for continuous pseudocontractive mappings. Appl Math Comput, 2009, 209(2):162-176 [11] Cho S Y, Qin X, Kang S M. Hybrid projection algorithms for treating common fixed points of a family of demicontinuous pseudocontractions. Appl Math Lett, 2012, 25:584-587 [12] Lan K Q, Wu J H. Convergence of approximates for demicontinuous pseudo-contractive maps in Hilbert spaces. Nonlinear Anal, 2002, 49(6):737-746 [13] Morales C H, Jung J S. Convergence of paths for pseudocontractive mappings in Banach spaces. Proc Amer Math Soc, 2000, 128(11):3411-3419 [14] Ofoedu E U, Zegeye H. Further investigation on iteration processes for pseudocontractive mappings with application. Nonlinear Anal, 2012, 75:153-162 [15] Yao Y H, Liou Y C, Marino G. A hybrid algorithm for pseudo-contractive mappings. Nonlinear Anal, 2009, 71:4997-5002 [16] Yu Y. An Iterative Algorithm on Approximating Fixed Points of Pseudocontractive Mappings. Journal of Applied Mathematics, 2012, Article ID 341953:11 pages [17] Zhang Q B, Cheng C Z. Strong convergence theorem for a family of Lipschitz pseudocontractive mappings in a Hilbert space. Math Comput Model, 2008, 48(3/4):480-485 [18] Zhou H. Strong convergence of an explicit iterative algorithm for continuous pseudo-contractives in Banach spaces. Nonlinear Anal, 2009, 70:4039-4046 [19] Mann W R. Mean value methods in iterations. Bull Amer Math Soc, 1953, 4:506-510 [20] Ishikawa S. Fixed points by a new iteration method. Proc Amer Math Soc, 1974, 44(1):147-150 [21] Yamada I, Butnariu D, Censor Y, Reich S. The hybrid steepest descent method for the variational inequality problems over the intersection of fixed points sets of nonexpansive mappings//Inherently Parallel Algorithms in Feasibility and Optimization and Their Application. Amsterdam:North-Holland, 2001 [22] Tian M. A general iterative algorithm for nonexpansive mappings in hilbert spaces. Nonlinear Anal, 2010, 73:689-694 [23] Shahzad N, Zegeye H. Approximating a common point of fixed points of a pseudocontractive mapping and zeros of sum of monotone mappings. Fixed Point Theory Appl, 2014, 2014:85 [24] Ofoedu E U, Onyi C E. New implicit and explicit approximation methods for solutions of integral equations of Hammerstein type. Appl Math Comput, 2014, 246:628-637 [25] Xu H K, Kim T H. Convergence of hybrid steepest-descent methods for variational inequalities. J Optim Theory Appl, 2003, 119:185-201 [26] Xu H K. Iterative algorithm for nonlinear operators. J London Math Soc, 2002, 66(2):1-17 [27] Hammerstein A. Nichtlineare integralgleichungen nebst anwendungen. Acta Math, 1930, 54:117-176 [28] Dolezale V. Monotone operators and its applications in automation and network theory. New York:Studies in Automation and control (Elesevier Science Publ), 1979 [29] Brézis H, Browder F E. Some new results about Hammerstein equations. Bull Amer Math Soc, 1974, 80:567-572 [30] Brézis H, Browder F E. Existence theorems for nonlinear integral equations of Hammerstein type. Bull Amer Math Soc, 1975, 81:73-78 [31] Brézis H, Browder F E. Nonlinear integral equations and system of Hammerstein type. Advances in Math, 1975, 18:115-147 [32] Browder F E, Figueiredo D G, Gupta P. Maximal monotone operators and a nonlinear integral equations of Hammerstein type. Bull Amer Math Soc, 1970, 76:700-705 [33] Browder F E, Gupta P. Monotone operators and nonlinear integral equations of Hammerstein type. Bull Amer Math Soc, 1969, 75:1347-1353 [34] Chepanovich R Sh. Nonlinear Hammerstein equations and fixed points. Publ Inst Math (Beograd) N S, 1984, 35:119-123 [35] De Figueiredo D G, Gupta C P. On the variational methods for the existence of solutions to nonlinear equations of Hammerstein type. Bull Amer Math Soc, 1973, 40:470-476 [36] Banas J. Integrable solutions of Hammerstein and Uryshon integral equations. J Aust Math Soc A, 1989, 46:61-68 [37] Banas J, Knap Z. Measure of weak noncompactness and nonlinear integral equations of convolution type. J Math Anal Appl, 1990, 146:353-362 [38] Chidume C E, Ofoedu E U. Solution of nonlinear integral equations of Hammerstein type. Nonlinear Anal, 2011, 74:4293-4299 [39] Chidume C E, Shehu Y. Strong convergence theorem for approximation of solutions of equations of Hammerstein type. Nonlinear Anal, 2012, 75:5664-5671 [40] Chidume C E, Shehu Y. Iterative approximation of solutions of equations of Hammerstein type in certain Banach spaces. Appl Math Comput, 2013, 219:5657-5667 [41] Chidume C E, Zegeye H. Approximation of solutions nonlinear equations of Hammerstein type in Hilbert space. Pro Amer Math Soc, 2005, 133:851-858 [42] Emmanuele G. Integrable solutions of a functional-integral equation. J Integral Equations Appl, 1992, 4:89-94 [43] Emmanuele G. An existence theorem for Hammerstein integral equations. Port Math, 1994, 51:607-611 [44] Latracha K, Taoudi M A. Existence results for a generalized nonlinear Hammerstein equation on L1 spaces. Nonlinear Anal, 2007, 66:2325-2333 [45] Shehu Y. Strong convergence theorem for integral equations of Hammerstein type in Hilbert spaces. Appl Math Comput, 2014, 231:140-147 [46] Shehu Y. Convergence theorems for maximal monotone operators and fixed point problems in Banach spaces. Appl Math Comput, 2014, 239:285-298 [47] Hulbert D S, Reich S. Asymptotic Behavior of Solutions to Nonlinear Volterra Integral Equations. J Math Anal Appl, 1984, 104:155-172 [48] Reich S. Admissible Pairs and integral Equations. J Math Anal Appl, 1987, 121:79-90 |