[1] Abidi H, Hmidi T. On the global well-posedness for Boussinesq system. J Differ Equ, 2007, 233(1): 199–220
[2] Ambrosetti A, Prodi G. A Primer of Nonlinear Analysis. Cambridge Studies in Advanced Mathematics,
34. Cambridge Univ Press, 1993
[3] Bahouri H, Chemin J Y, Danchin R. Fourier Analysis and Nonlinear Partial Differential Equations.
Grundlehren der Mathematischen Wissenschaften, 343. Springer, 2011
[4] Brezis H, Wainger S. A note on limiting cases of Sobolev embedding and convolution inequalities. Comm
Partial Differ Equ, 1980, 5: 773–789
[5] Cao C S, Wu J H. Global regularity for the 2D anisotropic Boussinesq equations with vertical dissipation.
Arch Rational Mech Anal, 2013, 208(3): 985–1004
[6] Chae D. Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv Math, 2006,
203: 497–513
[7] Chae D, Nam H S. Local existence and blow-up criterion for the boussinesq equations. Proc Royal Soc
Edinburgh, Section A, 1997, 127(5): 935–946
[8] Chae D, Wu J H. The 2D Boussinesq equations with logarithmically supercritical velocities. Adv Math,
2012, 230: 1618–1645
[9] Chemin J Y. Perfect Incompressible Fluids. Oxford University Press, 1998
[10] Danchin R. Remarks on the lifespan of the solutions to some models of incompressible fluid mechanics.
Proc Amer Math Soc, 2013, 141: 1979–1993[11] Danchin R, Paicu M. Global well-posedness issue for the inviscid Boussinesq system with Youdovich’s type
data. Comm Math Phys, 2009, 290(1): 1–14
[12] Danchin R, Paicu M. Global existence results for the anisotropic Boussinesq system in dimension two. Math
Models Methods Appl Sci, 2011, 21: 421–457
[13] E W, Shu C W. Samll-scale structures in Boussinesq convection. Phys Fluids, 1994, 6: 49–58
[14] Hmidi T. On a maximum principle and its application to the logarithmically critical Boussinesq system.
Anal Partial Differ Equ, 2011, 4: 247–284
[15] Hmidi T, Keraani S. On the global well-posedness of the two-dimensional Boussinesq system with a zero
diffusivity. Adv Differ Equ, 2007, 12: 461–480
[16] Hmidi T, Keraani S, Rousset F. Global well-posedness for a Boussinesq-Navier-Stokes system with critical
dissipation. J Differ Equ, 2010, 249: 2147–2174
[17] Hmidi T, Keraani S, Rousset F. Global well-posedness for Euler-Boussinesq system with critical dissipation.
Comm Partial Differ Equ, 2011, 36: 420–445
[18] Hmidi H, Zerguine M. On the global well-posedness of the Euler-Boussinesq system with fractional dissi-
pation. Phys D, 2010, 239(15): 1387–1401
[19] Kozono H, Ogawa T, Taniuchi Y. The critical Sobolev inequal-ities in Besov spaces and regularity criterion
to some semi-linear evolution equations. Math Z, 2002, 242: 251–278
[20] Hou T Y, Li C M. Global well-posedness of the viscous Boussinesq equations. Disc Cont Dyn Sys, 2005,
12(1): 1–12
[21] Jiu Q S, Miao C X, Wu J H, Zhang Z F. The 2D incompressible Boussinesq equations with general critical
dissipation. SIAM J Math Anal, 2014, 46(5): 3426–3454
[22] Kato T, Ponce G. Commutator estimates and the Euler and Navier-Stokes equations. Comm Pure Appl
Math, 1988, 41: 891–907
[23] Larios A, Lunasin E, Titi E S. Global well-posedness for the 2D Boussinesq system with anisotropic viscosity
and without heat diffusion. J Differ Equ, 2013, 255(9): 2636–2654
[24] Lions J L. Quelques M´ethodes de R´esolution de Probl`emes aux Limites non Lin´eaires. Dunod: Gauthier-
Villars, 1969
[25] Majda A, Bertozzi A. Vorticity and Incompressible Flow. Cambridge: Cambridge University Press, 2001
[26] Miao C X, Wu J H, Zhang Z F. Littlewood-Paley Theory and its Applications in Partial Differential
Equations of Fluid Dynamics. Beijing: Science Press, 2012 (in Chinese)
[27] Miao C X, Xue L T. On the global well-posedness of a class of Boussinesq-Navier-Stokes systems. NoDEA
Nonlinear Differ Equ Appl, 2011, 18: 707–735
[28] Pedlosky J. Geophysical Fluid Dynamics. New York: Springer-Verlag, 1987
[29] Tao T. Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation. Anal-
ysis and PDE, 2009, 2(3): 361–366
[30] Triebel H. Theory of Function Spaces II. Birkhauser: Springer-Verlag, 1992
[31] Xiang Z Y, Yan W. Global regularity of solutions to the Boussinesq equations with fractional diffusion.
Adv Differ Equ, 2013, 18(11/12): 1105–1128
[32] Xu X J. Global regularity of solutions of 2D Boussinesq equations with fractional diffusion. Nonlinear
Analysis: TMA, 2010, 72: 677–681
[33] Xu X J, Ye Z. The lifespan of solutions to the inviscid 3D Boussinesq system. Appl Math Letters, 2013,
26: 854–859 |