Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (2): 583-596.doi: 10.1007/s10473-023-0206-4
Previous Articles Next Articles
Chengpeng Li, Mingxin Chen, Jianfei Wang†
Received:
2022-03-30
Revised:
2022-06-28
Online:
2023-03-25
Published:
2023-04-12
Contact:
†Jianfei WANG, About author:
Chengpeng Li, E-mail: 1319610027@qq.com; Mingxin Chen, E-mail: chernmx@hqu.edu.cn
Supported by:
Chengpeng Li, Mingxin Chen, Jianfei Wang. TWO GENERALIZATIONS OF BOHR RADIUS*[J].Acta mathematica scientia,Series B, 2023, 43(2): 583-596.
[1] Bohr H.A theorem concerning power series. Proc Lond Math Soc, 1914, 13: 1-5 [2] Tomic M.Sur un théorème de H. Bohr. Math Scand, 1962, 11: 103-106 [3] Sidon S. Über einen Satz von Herrn Bohr. Math Z, 1927, 26: 731-732 [4] Paulsen V, Popescu G, Singh D.On Bohr's inequality. Proc Lond Math Soc, 2002, 85: 493-512 [5] Fournier R, Ruscheweyh S.On the Bohr radius for simply connected plane domains//Mashreghi J, Ransford T, Seip K. Hilbert Spaces of Analytic Functions. Providence, RI: Amer Math Soc, 2010: 165-171 [6] Evdoridis S, Ponnusamy S, Rasila A. Improved bohr's inequality for shifted disks. Results Math, 2021, 76: Art 14 [7] Muhanna Y.Bohr's phenomenon in subordination and bounded harmonic classes. Complex Var Elliptic Equ, 2010, 55: 1071-1078 [8] Hamada H. Bohr phenomenon for analytic functions subordinate to starlike or convex functions. J Math Anal Appl, 2021, 499(1): Article number 125019 [9] Ponnusamy S, Vijayakumar R, Wirths K. New inequalities for the coefficients of unimodular bounded functions. Results Math, 2020, 75: Article number 107 [10] Bhowmik B, Das N.Bohr phenomenon for subordinating families of certain univalent functions. J Math Anal Appl, 2018, 462: 1087-1098 [11] Aizenberg L.Generalization of results about the Bohr radius for power series. Stud Math, 2007, 180: 161-168 [12] Allu V, Halder H.Bohr radius for certain classes of starlike and convex univalent functions. J Math Anal Appl, 2021, 493(1): 124519 [13] Ali R, Barnard R, Solynin A.A note on Bohr's phenomenon for power series. J Math Anal Appl, 2017, 449: 154-167 [14] Ali R, Jain N, Ravichandran V. Bohr radius for classes of analytic functions. Results Math, 2019, 74: Article number 179 [15] Boas H, Khavinson D.Bohr's power series theorem in several variables. Proc Amer Math Soc, 1997, 125: 2975-2979 [16] Aizenberg L.Multidimensional analogues of Bohr's theorem on power series. Proc Amer Math Soc, 2000, 128: 1147-1155 [17] Defant A, García D, Maestre M. Bohr's power series theorem and local Banach space theory. J Reine Angew Math, 2003, 557: 173-197 [18] Defant A, Frerick L.A logarithmic lower bound for multi-dimensional bohr radii. Israel J Math, 2006, 152: 17-28 [19] Defant A, Frerick L, Ortega-Cerdà J, et al. The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive. Ann Math, 2011, 174: 485-497 [20] Popescu G.Bohr inequalities for free holomorphic functions on polyballs. Adv Math, 2019, 347: 1002-1053 [21] Galicer D, Mansilla M, Muro S.Mixed Bohr radius in several variables. Trans Amer Math Soc, 2020, 373: 777-796 [22] Liu M, Ponnusamy S.Multidimensional analogues of refined Bohr's inequality. Proc Amer Math Soc, 2021, 149: 2133-2146 [23] Liu T, Wang W.An absolute estimate of the homogeneous expansions of holomorphic mappings. Pacfic J Math, 2007, 231: 155-166 [24] Hamada H, Honda T, Kohr G.Bohr's theorem for holomorphic mappings with values in homogeneous balls. Israel J Math, 2009, 173: 177-187 [25] Hamada H, Honda T.Some generalizations of Bohr's theorem. Math Methods Appl Sci, 2012, 35: 2031-2035 [26] Liu X, Liu T. The Bohr inequality for holomorphic mappings with lacunary series in several complex variables. J Math Anal Appl, 2020, 485(2): Article number 123844 [27] Beardon A, Minda D.The hyperbolic metric and geometric function theory//Ponnusamy S, Sugawa T, Vuorinen M. Quasiconformal Mappings and Their Applications. New Delhi: Narosa, 2007 [28] Rogosinski W.On the coefficients of subordinate functions. Proc London Math Soc, 1943, 48: 48-82 [29] Suffridge T J.Some special classes of conformal mappings. Handbook of Complex Analysis, 2005, 2: 309-338 [30] Boas H.Majorant series. J Korean Math Soc, 2000, 37: 321-337 [31] Pfaltzgraff J, Suffridge T J.Norm order and geometric properties of holomorphic mappings in Cn. J Anal Math, 2000, 82: 285-313 [32] Hamada H, Kohr G.Growth and distortion results for convex mappings in infinite dimensional spaces. Complex Var Elliptic Equ, 2002, 47: 291-301 [33] Suffridge T J.The principle of subordination applied to functions of several variables. Pacific J Math, 1970, 1: 241-248 |
[1] | Rouyuan Lin, Mingsheng Liu, Saminathan Ponnusamy. THE BOHR-TYPE INEQUALITIES FOR HOLOMORPHIC MAPPINGS WITH A LACUNARY SERIES IN SEVERAL COMPLEX VARIABLES* [J]. Acta mathematica scientia,Series B, 2023, 43(1): 63-79. |
[2] | Xiaosong LIU. SHARP DISTORTION THEOREMS FOR A CLASS OF BIHOLOMORPHIC MAPPINGS IN SEVERAL COMPLEX VARIABLES [J]. Acta mathematica scientia,Series B, 2022, 42(2): 454-466. |
[3] | Jianfei WANG, Xiaofei ZHANG. THE SUBORDINATION PRINCIPLE AND ITS APPLICATION TO THE GENERALIZED ROPER-SUFFRIDGE EXTENSION OPERATOR [J]. Acta mathematica scientia,Series B, 2022, 42(2): 611-622. |
[4] | Daochun SUN, Yingying HUO, Fujie CHAI. NORMAL CRITERIA FOR A FAMILY OF HOLOMORPHIC CURVES [J]. Acta mathematica scientia,Series B, 2021, 41(6): 1887-1895. |
[5] | Qinghua XU, Yuanping LAI. ON REFINEMENT OF THE COEFFICIENT INEQUALITIES FOR A SUBCLASS OF QUASI-CONVEX MAPPINGS IN SEVERAL COMPLEX VARIABLES [J]. Acta mathematica scientia,Series B, 2020, 40(6): 1653-1665. |
[6] | Xiaosong LIU. A SUBCLASS OF QUASI-CONVEX MAPPINGS ON A REINHARDT DOMAIN IN $\mathbb{C}^n$ [J]. Acta mathematica scientia,Series B, 2020, 40(6): 1709-1722. |
[7] | Jie WANG, Jianfei WANG. GENERALIZED ROPER-SUFFRIDGE OPERATOR FOR $\epsilon$ STARLIKE AND BOUNDARY STARLIKE MAPPINGS [J]. Acta mathematica scientia,Series B, 2020, 40(6): 1753-1764. |
[8] | Rumeng MA, Jingshi XU. LIPSCHITZ TYPE CHARACTERIZATIONS FOR BERGMAN-ORLICZ SPACES AND THEIR APPLICATIONS [J]. Acta mathematica scientia,Series B, 2020, 40(5): 1445-1458. |
[9] | Danli ZHANG, Huiming XU, Jianfei WANG. CONVEX MAPPINGS ASSOCIATED WITH THE ROPER-SUFFRIDGE EXTENSION OPERATOR [J]. Acta mathematica scientia,Series B, 2019, 39(6): 1619-1627. |
[10] | Mingsheng LIU, Fen WU, Yan YANG. SHARP ESTIMATES OF QUASI-CONVEX MAPPINGS OF TYPE B AND ORDER α [J]. Acta mathematica scientia,Series B, 2019, 39(5): 1265-1276. |
[11] | Le HE, Zhenhan TU. THE SCHWARZ LEMMA AT THE BOUNDARY OF THE NON-CONVEX COMPLEX ELLIPSOIDS [J]. Acta mathematica scientia,Series B, 2019, 39(4): 915-926. |
[12] | Yanyan CUI, Hao LIU. THE INVARIANCE OF SUBCLASSES OF BIHOLOMORPHIC MAPPINGS ON BERGMAN-HARTOGS DOMAINS [J]. Acta mathematica scientia,Series B, 2019, 39(4): 1103-1120. |
[13] | Xiaofei ZHANG, Jin LU, Xiaofei LI. GROWTH AND DISTORTION THEOREMS FOR ALMOST STARLIKE MAPPINGS OF COMPLEX ORDER λ [J]. Acta mathematica scientia,Series B, 2018, 38(3): 769-777. |
[14] | Xiaosong LIU, Taishun LIU. SHARP ESTIMATES OF ALL HOMOGENEOUS EXPANSIONS FOR A SUBCLASS OF QUASI-CONVEX MAPPINGS OF TYPE B AND ORDER α IN SEVERAL COMPLEX VARIABLES [J]. Acta mathematica scientia,Series B, 2016, 36(6): 1804-1818. |
[15] | LIU Yang, DAI ShaoYu. A NOTE ON SCHWARZ LEMMA FOR THE MODULUS OF HOLOMORPHIC MAPPINGS ON D [J]. Acta mathematica scientia,Series B, 2015, 35(1): 89-94. |
|