[1] Minty G J. On the monotonicity of the gradient of a convex function. Pacif J Math, 1964, 14: 243–247
[2] Rockafellar R T. Characterization of the subdifferentials of convex functions. Pacif J Math, 1966, 17(3): 497–510
[3] Petryshyn WV. A characterization of strict convexity of Banach spaces and other uses of duality mappings. J Funct Anal, 1970, 6(2): 282–291
[4] Rockafellar R T. On the maximal monotonicity of subdifferential mappings. Pacif J Math, 1970, 33(1): 209–216
[5] Bruck R E. A strongly convergent iterative solution of 0 2 U(x) for a maximal monotone operator U in Hilbert space. J Math Anal Appl, 1974, 48: 114–126
[6] Rockafellar R T. Monotone operators and the proximal point algorithm. Siam J Control Optim, 1976, 14(5): 877–896
[7] Br´ezis H, Lions P L. Produits infinis de resolvants. Isreal J Math, 1978, 29: 329–345
[8] Reich S. Strong convergence theorems for resolvents of accretive operators in Banach spaces. J Math Anal Appl, 1980, 75: 287–292
[9] Eckstein J, Bertsekas D P. On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math Program, 1992, 55: 293–318
[10] Tan K K, Xu H K. Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process. J Math Anal Appl, 1993, 178: 301–308
[11] Tseng P. Alternating projection-proximal methods for convex programming and variational inequalities. SIAM J Optimiz, 1997, 7: 951–965
[12] Kamimura S, Takahashi W. Approximating solutions of maximal monotone operators in Hilbert spaces. J Approx Theory, 2000, 106: 226–240
[13] Xu H K. Iterative algorithms for nonlinear operators. J Lond Math Soc, 2002, 66(1): 240–256
[14] Kamimura S, Takahashi W. Strong convergence of a proximal-type algorithm in a Banach space. SIAM J Optim, 2002, 13(3): 938–945
[15] Fang Y P, Huang N J. H-monotone operator and resolvent operator technique for variational inclusions. Appl Math Comput, 2003, 145: 795–803
[16] Alvarez F. Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space. SIAM J Optim, 2004, 14(3): 773–782
[17] Burachik R S, Lopes J O, Svaiter B F. An outer approximation method for the variational inequality problem. SIAM J Control Optim, 2005, 43(6): 2071–2088
[18] Kim T H, Xu H K. Strong convergence of modified Mann iterations. Nonlinear Anal TMA, 2005, 61: 51–60
[19] Matsushita Shin-ya, Takahashi Wataru. A strong convergence theorem for relatively nonexpansive map-pings in a Banach space. J Approx Theory, 2005, 134: 257–266
[20] Nadezhkina N, Takahashi W. Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings. SIAM J Optim, 2006, 16(4): 1230–1241
[21] Plubtieng S, Ungchittrakool K. Strong convergence theorems for a common fixed point of two relatively nonexpansive mappings in a Banach space. J Approx Theory, 2007, 149: 103–115
[22] Yao Y, Chen R. Iterative algorithm for approximating solutions of maximal monotone operators in Hilbert spaces. Fixed Point Theory and Applications, 2007, Article ID 32870, 8 pages, doi:10.1155/2007/32870
[23] Zeng Lu-Chuan, Guub Sy-Ming, Yao Jen-Chih. An iterative method for generalized nonlinear set-valued mixed quasi-variational inequalities with H-monotone mappings. Comput Math Appl, 2007, 54: 476–483
[24] Ibaraki Takanori, Takahashi Wataru. A new projection and convergence theorems for the projections in Banach spaces. J Approx Theory, 2007, 149: 1–14
[25] Maing´e Paul-Emile. A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J Control Optim, 2008, 47(3): 1499–1515
[26] Kim J K, Cho S Y, Qin Xiaolong. Some results on generalized equilibrium problems involving strictly pseudocontractive mappings. Acta Math Sci, 2011, 31B(5): 2031–2057
[27] Gu F. Necessary and sufficient condition of the strong convergence for two finite families of uniformly L-lipschitzian mappings. Acta Math Sci, 2011, 31B(5): 2058–2066
[28] Cai G, Bu S Q. Weak convergence theorems for general equilibrium problems and variational inequality problems and fixed point problems in Banach spaces. Acta Math Sci, 2013, 33B(1): 303–320 |