Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (3): 1403-1414.doi: 10.1007/s10473-023-0323-0
Previous Articles Next Articles
Wenyi Pei1,†, Litan Yan2, Zhenlong Chen3
Received:
2021-12-16
Revised:
2022-07-05
Online:
2023-06-25
Published:
2023-06-06
Contact:
† Wenyi Pei, E-mail: peiwenyi@163.com
About author:
Litan Yan, E-mail: litanyan@dhu.edu.cn;Zhenlong Chen, E-mail: zlchenv@163.com
Supported by:
Wenyi Pei, Litan Yan, Zhenlong Chen. HARNACK TYPE INEQUALITIES FOR SDES DRIVEN BY FRACTIONAL BROWNIAN MOTION WITH MARKOVIAN SWITCHING*[J].Acta mathematica scientia,Series B, 2023, 43(3): 1403-1414.
[1] Yuan C G, Mao X R.Stability of stochastic delay hybrid systems with jumps. Eur J Control, 2010, 16(6): 595-608 [2] Mao X R.Stability of stochastic differential equations with Markovian switching. Stoch Proc Appl, 1999, 79(1): 45-67 [3] Yuan C G, Mao X R.Asymptotic stability in distribution of stochastic differential equations with Markovian switching. Stoch Proc Appl, 2003, 103(2): 277-291 [4] Cong S.On almost sure stability conditions of linear switching stochastic differential systems. Nonlinear Anal Hybrid Syst, 2016, 22: 108-115 [5] Bardet J B, Guérin H, Malrieu F.Long time behavior of diffusions with Markov switching. ALEA Lat Am J Probab Math Stat, 2010, 7: 151-170 [6] Cloez B, Hairer M.Exponential ergodicity for Markov processes with random switching. Bernoulli, 2015, 21(1): 505-536 [7] Yin G G, Zhu C.Hybrid Switching Diffusions: Properties and Applications. New York: Springer, 2009 [8] Rüockner M, Wang F Y.Log-Harnack inequality for stochastic differential equations in Hilbert spaces and its consequences. Infin Dimens Anal Quantum Probab Relat, 2010, 13(1): 27-37 [9] Wang F Y.Logarithmic Sobolev inequalities on noncompact Riemannian manifolds. Probab Theory Rel, 1997, 109(3): 417-424 [10] Es-Sarhir A, Von Renesse M K, Scheutzow M. Harnack inequality for functional SDEs with bounded memory. Elect Comm Probab, 2009, 14: 560-565 [11] Liu W, Wang F Y.Harnack inequality and strong Feller property for stochastic fast-diffusion equations. J Math Anal Appl, 2008, 342(1): 651-662 [12] Fan X L.Harnack-type inequalities and applications for SDE driven by fractional Brownian motion. Stoch Anal Appl, 2014, 32(4): 602-618 [13] Fan X L.Integration by parts formula and applications for stochastic (functional) Brownian motions. Stoch Anal Appl, 2015, 33(2): 199-212 [14] Shao J H.Strong solutions and strong Feller properties for regime-switching diffusion processes in an infinite state space. SIAM J Control Optim, 2015, 53(4): 2462-2479 [15] Bobkov S G, Gentil I, Ledoux M.Hypercontractivity of Hamilton-Jacobi equations. J Math Pures Appl, 2001, 80(7): 669-696 [16] Gong F Z, Wang F Y.Heat kernel estimates with application to compactness of manifolds. Q J Math, 2001, 52(2): 171-180 [17] Anderson W.Continuous-Time Markov Chain. New York: Springer, 1991 [18] Ghosh M K, Arapostahis A, Marcus S I.Ergodic control of switching diffusions. SIAM J Control Optim, 1997, 35(6): 1952-1988 [19] Skorohod A V.Asymptotic Methods in the Theory of Stochastic Differential Equations. Providence, RI: American Mathematical Society, 2009 [20] Mishura Y.Stochastic Calculus for Fractional Brownian Motion and Related Process. Berlin: Springer, 2008 [21] Biagini F, Hu Y Z, Øksendal B, Zhang T.Stochastic Calculus for Fractional Brownian Motion and Applications. London: Springer Science & Business Media, 2008 [22] Young L C.An inequality of the Hüolder type connected with Stieltjes integration. Acta Math, 1936, 67: 251-282 [23] Züahle M.Integration with respect to fractal functions and stochastic calculus I. Probab Theory Rel, 1998, 111(3): 333-374 [24] Duncan T E, Hu Y Z, Pasik-Duncan B.Stochastic calculus for fractional Brownian motion I. Theory. SIAM J Control Optim, 2000, 38(2): 582-612 [25] Nualart D, Răşcanu A.Differential equations driven by fractional Brownian motion. Collect Math, 2002, 53(1): 55-81 [26] Alos E, Mazet O, Nualart D.Stochastic calculus with respect to Gaussian processes. Ann Probab, 2001, 29(2): 766-801 [27] Decreusefond L, üUstüunel A S.Stochastic analysis of the fractional Brownian motion. Potential Anal, 1999, 10: 177-214 [28] Yan L T, Pei W Y, Zhang Z Z.Exponential stability of SDEs driven by fBm with Markovian switching. Discrete Cont Dyn A, 2019, 39(11): 6467-6483 [29] Nualart D, Ouknine Y.Regularization of differential equations by fractional noise. Stoch Proc Appl, 2002, 102(1): 103-116 [30] Da Prato G, Rüockner M, Wang F Y.Singular stochastic equations on Hilberts space: Harnack inequalities for their transition semigroups. J Funct Anal, 2009, 257(4): 992-1017 |
|