Acta mathematica scientia,Series B ›› 2020, Vol. 40 ›› Issue (3): 734-754.doi: 10.1007/s10473-020-0311-6

• Articles • Previous Articles     Next Articles

A LIMIT LAW FOR FUNCTIONALS OF MULTIPLE INDEPENDENT FRACTIONAL BROWNIAN MOTIONS

Qian YU   

  1. School of Statistics, East China Normal University, Shanghai 200241, China
  • Received:2018-12-12 Revised:2019-10-14 Online:2020-06-25 Published:2020-07-17
  • Supported by:
    Q. Yu is partially supported by ECNU Academic Innovation Promotion Program for Excellent Doctoral Students (YBNLTS2019-010) and the Scientific Research Innovation Program for Doctoral Students in Faculty of Economics and Management (2018FEM-BCKYB014).

Abstract: Let B={BH(t)}t0 be a d-dimensional fractional Brownian motion with Hurst parameter H(0,1). Consider the functionals of k independent d-dimensional fractional Brownian motions

1n0ent10entkf(BH,1(s1)++BH,k(sk))ds1dsk,
where the Hurst index H=k/d. Using the method of moments, we prove the limit law and extending a result by Xu \cite{xu} of the case k=1. It can also be regarded as a fractional generalization of Biane \cite{biane} in the case of Brownian motion.

Key words: Limit theorem, fractional Brownian motion, method of moments, chaining argument

CLC Number: 

  • 60F17
Trendmd