Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (3): 1382-1402.doi: 10.1007/s10473-023-0322-1
Previous Articles Next Articles
Juan Pan1, Yunhua Zhou2,†
Received:
2021-11-06
Online:
2023-06-25
Published:
2023-06-06
Contact:
† Yunhua Zhou, E-mail: zhouyh@cqu.edu.cn
About author:
Juan Pan, E-mail: juanpan20@hotmail.com
Supported by:
Juan Pan, Yunhua Zhou. SOME RESULTS ON BUNDLE SYSTEMS FOR A COUNTABLE DISCRETE AMENABLE GROUP ACTION*[J].Acta mathematica scientia,Series B, 2023, 43(3): 1382-1402.
[1] Bowen R.Entropy for group endomorphisms and homogeneous spaces. Trans Amer Math Soc, 1971, 513: 401-414 [2] Dai X.Liao style numbers of differential systems. Commun Contemp Math, 2004, 6(2): 279-299 [3] Dou D, Zheng D, Zhou X.Packing topological entropy for amenable group actions. Ergodic Theory and Dynamical Systems, 2021, 43(2): 480-514 [4] Duarte P, Klein S.Lyapunov Exponents of Linear Cocycles: Continuity via Large Deviations. Paris: Atlantis Press, 2016 [5] Hu H.Some ergodic properties of commuting diffeomorphisms. Ergodic Theory Dyn Systems, 1993, 13(1): 73-100 [6] Huang W, Ye X, Zhang G.Local entropy theory for a countable discrete amenable group action. J Funct Anal, 2001, 261(4): 1028-1082 [7] Liang C, Liu G, Sun W.Approximation properties on invariant measure and Oseledec splitting in non- uniformly hyperbolic systems. Trans Amer Math Soc, 2009, 361(3): 1543-1579 [8] Liao S.Certain ergodic theorems for differential systems on a compact differentiable manifold. Acta Sci Natur Univ Pekin, 1963, 9: 241-265, 309-327 (in Chinese). English translation appears as Chapter 1 in Liao's book Qualitative Theory on Differentiable Dynamical Systems Chapter 1 in Liao's book Qualitative Theory on Differentiable Dynamical Systems. Beijing: Science Press, 1996 [9] Liao S.Standard systems of differential equations and obstruction sets-from linearity to perturbations// System Researches, Proceedings Dedicated to the 85th Anniversary of Qian Xue-Sen. Hangzhou: Zhejiang Education Press, 1996: 279-290 (in Chinese) [10] Lindenstrauss E.Pointwise theorems for amenable groups. Invent Math, 2001, 146(2): 259-295 [11] Ornstein D S, Weiss B.Entropy and isomorphism theorems for actions of amenable groups. J Anal Math, 1987, 48(1): 1-141 [12] Oseledets V I.A multiplicative ergodic theorem. Characteristic Lyapunov, exponents of dynamical systems. Trudy Moskov Math Obsh, 1968, 19: 179-210 [13] Sacksteder R, Shub M.Entropy on sphere bundles. Adv in Math, 1978, 28(2): 174-177 [14] Shimomura T.Topological entropy and periodic points of a factor of a subshift of finite type. Nagoya Math J, 1986, 104: 117-127 [15] Sun W.Entropy of orthonormal n-frame flows. Nonlinearity, 2001, 14(4): 829-842 [16] Sun W.Entropy for frame bundle systems and Grassmann bundle systems induced by a diffeomorphism. Science in China Series A: Mathematics, 2002, 45(9): 1147-1153 [17] Sun W, Vargas E.Entropy and ergodic probability for differentiable dynamical systems and their bundle extensions. Topology Appl, 2007, 154(3): 683-697 [18] Weiss B.Actions of amenable groups. Topics in Dynamics and Ergodic Theory, 2003, 310: 226-262 [19] Zheng D, Chen E, Yang J.On large deviations for amenable group action. Discrete Contin Dyn Syst, 2016, 12: 7191-7206 |
[1] | Shifeng GENG, Feimin HUANG, Xiaochun WU. L2-CONVERGENCE TO NONLINEAR DIFFUSION WAVES FOR EULER EQUATIONS WITH TIME-DEPENDENT DAMPING [J]. Acta mathematica scientia,Series B, 2022, 42(6): 2505-2522. |
[2] | Juan C. JUAJIBIOY. ON THE CAUCHY PROBLEM FOR AW-RASCLE SYSTEM WITH LINEAR DAMPING [J]. Acta mathematica scientia,Series B, 2021, 41(1): 311-318. |
[3] | Peng SUN. ON THE ENTROPY OF FLOWS WITH REPARAMETRIZED GLUING ORBIT PROPERTY [J]. Acta mathematica scientia,Series B, 2020, 40(3): 855-862. |
[4] | Gui-Qiang G. CHEN, Matthew RIGBY. STABILITY OF STEADY MULTI-WAVE CONFIGURATIONS FOR THE FULL EULER EQUATIONS OF COMPRESSIBLE FLUID FLOW [J]. Acta Mathematica Scientia, 2018, 38(5): 1485-1514. |
[5] | Tianyuan XU, Chunhua JIN, Shanming JI. DISCONTINUOUS TRAVELING WAVE ENTROPY SOLUTIONS OF A MODIFIED ALLEN-CAHN MODEL [J]. Acta mathematica scientia,Series B, 2017, 37(6): 1740-1760. |
[6] | Chunyin JIN. EXISTENCE AND UNIQUENESS OF ENTROPY SOLUTION TO PRESSURELESS EULER SYSTEM WITH A FLOCKING DISSIPATION [J]. Acta mathematica scientia,Series B, 2016, 36(5): 1262-1284. |
[7] | Weibin LIU, Jihua MA. TOPOLOGICAL ENTROPY OF PERIODIC COVEN CELLULAR AUTOMATA [J]. Acta mathematica scientia,Series B, 2016, 36(2): 579-592. |
[8] | Yangyang CHEN, Yun ZHAO, Wen-Chiao CHENG. SUB-ADDITIVE PRESSURE ON A BOREL SET [J]. Acta mathematica scientia,Series B, 2015, 35(5): 1203-1213. |
[9] | Volker ELLING. RELATIVE ENTROPY AND COMPRESSIBLE POTENTIAL FLOW [J]. Acta mathematica scientia,Series B, 2015, 35(4): 763-776. |
[10] | LI Ming-Tian, MA Ji-Hua. ON A LEMMA OF BOWEN [J]. Acta mathematica scientia,Series B, 2014, 34(3): 932-940. |
[11] | CHEN Gui-Qang, XIAO Chang-Guo, ZHANG Yong-Qian. EXISTENCE OF ENTROPY SOLUTIONS TO TWO-DIMENSIONAL STEADY EXOTHERMICALLY REACTING EULER EQUATIONS [J]. Acta mathematica scientia,Series B, 2014, 34(1): 1-38. |
[12] | WANG Yu-Zhao, YANG Jie, CHEN Wen-Yi. GRADIENT ESTIMATES AND ENTROPY FORMULAE FOR WEIGHTED p-HEAT EQUATIONS ON SMOOTH METRIC MEASURE SPACES [J]. Acta mathematica scientia,Series B, 2013, 33(4): 963-974. |
[13] | WANG Zhi-Gang, LI Ya-Chun. THE HOMOGENEOUS DIRICHLET PROBLEM FOR QUASILINEAR ANISOTROPIC DEGENERATE PARABOLIC-HYPERBOLIC EQUATION#br# WITH Lp INITIAL VALUE [J]. Acta mathematica scientia,Series B, 2012, 32(5): 1727-1742. |
[14] | GAO Fu-Qing, XU Ming-Zhou. RELATIVE ENTROPY AND LARGE DEVIATIONS UNDER SUBLINEAR EXPECTATIONS [J]. Acta mathematica scientia,Series B, 2012, 32(5): 1826-1834. |
[15] | M. Rahimi, A. Riazi. ENTROPY FUNCTIONAL FOR CONTINUOUS SYSTEMS OF FINITE ENTROPY [J]. Acta mathematica scientia,Series B, 2012, 32(2): 775-782. |
|