Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (3): 1415-1438.doi: 10.1007/s10473-023-0324-z
Previous Articles Next Articles
Danyang LI1, Hua LIU1,†, Haotian ZHANG1, Ming MA1, Yong YE2, Yumei WEI3
Received:
2022-02-11
Revised:
2022-08-25
Online:
2023-06-25
Published:
2023-06-06
Contact:
† Hua LIU, E-mail: 7783360@qq.com
About author:
Danyang LI, E-mail: 1964757049@qq.com; Haotian ZHANG, E-mail: 845420039@qq.com; Ming MA, E-mail: 1020841601@qq.com; Yong YE, E-mail:13339239813@163.com; Yumei WEI, E-mail: 649118046@qq.com
Supported by:
Danyang LI, Hua LIU, Haotian ZHANG, Ming MA, Yong YE, Yumei WEI. BIFURCATION ANALYSIS IN A PREDATOR-PREY MODEL WITH AN ALLEE EFFECT AND A DELAYED MECHANISM*[J].Acta mathematica scientia,Series B, 2023, 43(3): 1415-1438.
[1] Lotka A J.Elements of Physical Biology. Baltimore: Williams & Wilkins, 1925 [2] Volterra V.Fluctuations in the abundance of a species considered mathematically. Nature, 1926, 118: 558-560 [3] Holling C S.The components of predation as revealed by a study of small-mammal predation of the European Pine Sawfly 1. The Canadian Entomologist, 1959, 91(5): 293-320 [4] Ye Y, Liu H, Wei Y M, et al.Dynamic study of a predator-prey model with Allee effect and Holling type-I functional response. Advances in Difference Equations, 2019, 2019(1): 1-15 [5] Jiang G, Lu Q, Qian L.Complex dynamics of a Holling type II prey-predator system with state feedback control. Chaos, Solitons and Fractals, 2007, 31: 448-461 [6] Huang Y, Chen F, Zhong L.Stability analysis of a prey-predator model with Holling type III response function incorporating a prey refuge. Applied Mathematics and Computation, 2006, 182: 672-683 [7] Huang J C, Xiao D M.Analyses of bifurcations and stability in a predator-prey system with Holling type-IV functional response. Acta Mathematicae Applicatae Sinica, 2004, 20(1): 167-178 [8] Zhang X C, Sun G Q, Jin Z.Spatial dynamics in a predator-prey model with Beddington-DeAngelis functional response. Physical Review E, 2012, 85(2): 021924 [9] Fattahpour H, Nagata W, Zangeneh H R Z. Prey-predator dynamics with two predator types and Michaelis- Menten predator harvesting. Differential Equations and Dynamical Systems, 2023, 31: 165-190 [10] Allee W C.Animal Aggregations: A Study in General Sociology. Chicago: University of Chicago Press, 1931 [11] Ghosh K, Biswas S, Samanta S, et al.Effect of multiple delays in an eco-epidemiological model with strong Allee effect. International Journal of Bifurcation and Chaos, 2017, 27(11): 1750167 [12] Ye Y, Liu H, Wei Y M, et al. Dynamic study of a predator-prey model with weak Allee effect and delay. Advances in Mathematical Physics, 2019, 2019: Art 7296461 [13] Celik C, Merdan H, Duman O, Akin O.Allee effects on population dynamics with delay. Chaos, Solitons & Fractals, 2008, 37(1): 65-74 [14] Merdan H.Stability analysis of a general discrete-time population model involving delay and Allee effects. Applied Mathematics and Computation, 2012, 219(4): 1821-1832 [15] Zhou J Y, Zhao Y, Ye Y, Bao Y X.Bifurcation analysis of a fractional-order simplicial SIRS system induced by double delays. International Journal of Bifurcation and Chaos, 2022, 32(5): 2250068 [16] Banerjee M, Takeuchi Y.Maturation delay for the predators can enhance stable coexistence for a class of prey-predator models. Journal of Theoretical Biology, 2017, 412: 154-171 [17] Dubey B, Kumar A, Maiti A P.Global stability and Hopf-bifurcation of prey-predator system with two discrete delays including habitat complexity and prey refuge. Communications in Nonlinear Science and Numerical Simulation, 2019, 67: 528-554 [18] Zhang J.Bifurcation analysis of a modified Holling-Tanner predator-prey model with time delay. Applied Mathematical Modelling, 2012, 36(3): 1219-1231 [19] May R M.Time delay versus stability in population models with two or three tropic levels. Ecology, 1973, 54: 315-325 [20] Arino J, Wang L, Wolkowicz G S K. An alternative formulation for a delayed logistic equation. Journal of Theoretical Biology, 2006, 241(1): 109-119 [21] Beddington J R, May R M.Time delays are not necessarily destabilizing. Mathematical Biosciences, 1975, 27: 109-117 [22] Jankovic M, Petrovskii S.Are time delays always destabilizing? Revisiting the role of time delays and the Allee effect. Theoretical Ecology, 2014, 7(4): 335-349 [23] Hale J, Lunel S.Introduction to Functional Differential Equations. New York: Springer, 1993 [24] Song Y L, Wei J.Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system. Journal of Mathematical Analysis and Applications, 2005, 301: 1-21 [25] Schneider K R, Hassard B D.Theory and Applications of Hopf Bifurcation. Cambridge: Cambridge Uni- versity Press, 1981 [26] Ye Y, Zhao Y.Bifurcation analysis of a delay-induced predator-prey model with Allee effect and prey group defense. International Journal of Bifurcation and Chaos, 2021, 31(10): 2150158 [27] Martin A, Ruan S G.Predator-prey models with delay and prey harvesting. Journal of Mathematical Biology, 2001, 43(3): 247-267 |
[1] | Wenxuan Lu. STABILITY CONDITIONS AND THE MIRROR SYMMETRY OF K3 SURFACES IN ATTRACTOR BACKGROUNDS* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1007-1030. |
[2] | Zhankuan Zeng, Yanping CHEN. A LOCAL DISCONTINUOUS GALERKIN METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 839-854. |
[3] | Bo Han, Manseob Lee. A GENERALIZED LIPSCHITZ SHADOWING PROPERTY FOR FLOWS* [J]. Acta mathematica scientia,Series B, 2023, 43(1): 259-288. |
[4] | Thieu Huy NGUYEN, Truong Xuan PHAM, Thi Ngoc Ha VU, The Sac LE. EXISTENCE AND STABILITY OF PERIODIC AND ALMOST PERIODIC SOLUTIONS TO THE BOUSSINESQ SYSTEM IN UNBOUNDED DOMAINS [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1875-1901. |
[5] | Ravinder Kumar SHARMA, Sumit CHANDOK. THE GENERALIZED HYPERSTABILITY OF GENERAL LINEAR EQUATION IN QUASI-2-BANACH SPACE [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1357-1372. |
[6] | Sijie LIU, Wancheng SHENG. THE STABILITY OF THE DELTA WAVE TO PRESSURELESS EULER EQUATIONS WITH VISCOUS AND FLUX PERTURBATIONS [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1519-1535. |
[7] | Ning-An LAI, Wei XIANG, Yi ZHOU. GLOBAL INSTABILITY OF MULTI-DIMENSIONAL PLANE SHOCKS FOR ISOTHERMAL FLOW [J]. Acta mathematica scientia,Series B, 2022, 42(3): 887-902. |
[8] | Xulong QIN, Hua QIU, Zheng-an YAO. GLOBAL STABILITY OF LARGE SOLUTIONS TO THE 3D MAGNETIC BÉNARD PROBLEM [J]. Acta mathematica scientia,Series B, 2022, 42(2): 588-610. |
[9] | Guangjun SHEN, Wentao XU, Jiang-Lun WU. AN AVERAGING PRINCIPLE FOR STOCHASTIC DIFFERENTIAL DELAY EQUATIONS DRIVEN BY TIME-CHANGED LÉVY NOISE [J]. Acta mathematica scientia,Series B, 2022, 42(2): 540-550. |
[10] | Rakesh KUMAR, Anuj Kumar SHARMA, Govind Prasad SAHU. DYNAMICAL BEHAVIOR OF AN INNOVATION DIFFUSION MODEL WITH INTRA-SPECIFIC COMPETITION BETWEEN COMPETING ADOPTERS [J]. Acta mathematica scientia,Series B, 2022, 42(1): 364-386. |
[11] | Douglas R. ANDERSON, Masakazu ONITSUKA. HYERS-ULAM STABILITY OF SECOND-ORDER LINEAR DYNAMIC EQUATIONS ON TIME SCALES [J]. Acta mathematica scientia,Series B, 2021, 41(5): 1809-1826. |
[12] | Ravi AGARWAL, Ricardo ALMEIDA, Snezhana HRISTOVA, Donal O'REGAN. NON-INSTANTANEOUS IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS WITH STATE DEPENDENT DELAY AND PRACTICAL STABILITY [J]. Acta mathematica scientia,Series B, 2021, 41(5): 1699-1718. |
[13] | Junpei GAO, Haibo CUI. LARGE-TIME BEHAVIOR OF SOLUTIONS TO THE INFLOW PROBLEM OF THE NON-ISENTROPIC MICROPOLAR FLUID MODEL [J]. Acta mathematica scientia,Series B, 2021, 41(4): 1169-1195. |
[14] | Xueli KE, Baoquan YUAN, Yaomin XIAO. A STABILITY PROBLEM FOR THE 3D MAGNETOHYDRODYNAMIC EQUATIONS NEAR EQUILIBRIUM [J]. Acta mathematica scientia,Series B, 2021, 41(4): 1107-1118. |
[15] | Jiafa XU, Bakhtawar PERVAIZ, Akbar ZADA, Syed Omar SHAH. STABILITY ANALYSIS OF CAUSAL INTEGRAL EVOLUTION IMPULSIVE SYSTEMS ON TIME SCALES [J]. Acta mathematica scientia,Series B, 2021, 41(3): 781-800. |
|