Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (3): 1323-1332.doi: 10.1007/s10473-023-0318-x
Previous Articles Next Articles
Manas Ranjan Sahoo1, Satyanarayana Engu2,†, Smriti Tiwari2
Received:
2021-05-12
Revised:
2021-12-13
Online:
2023-06-25
Published:
2023-06-06
Contact:
† Satyanarayana Engu,E-mail: satya@nitw.ac.in
About author:
Manas Ranjan Sahoo,E-mail: manas@niser.ac.in;Smriti Tiwari, E-mail: smriti19@student.nitw.ac.in
Supported by:
Manas Ranjan Sahoo, Satyanarayana Engu, Smriti Tiwari. A REMARK ON LARGE TIME ASYMTOTICS FOR SOLUTIONS OF A NONHOMOGENEOUS VISCOUS BURGERS EQUATION*[J].Acta mathematica scientia,Series B, 2023, 43(3): 1323-1332.
[1] Chung J, Kim Y J, Slemrod M.An explicit solution of burgers equation with stationary point source. J Differential Equations, 2014, 257(7): 2520-2542 [2] Hopf E.The partial differential equation [3] Kim Y J, Ni W M.On the rate of convergence and asymptotic profile of solutions to the viscous Burgers equation. Indiana Univ Math J, 2002, 51(3): 727-752 [4] Kim Y J, Tzavaras A E.Diffusive N-waves and metastability in Burgers equation. SIAM J Math Anal, 2002, 33(3): 607-633 [5] Kim Y J, Ni W M.Higher order approximations in the heat equation and the truncated moment problem. SIAM J Math Anal, 2009, 40(6): 2241-2261 [6] Kim Y J.A generalization of the moment problem to a complex measure space and an approximation technique using backward moments. Discrete Contin Dyn Syst, 2011, 30(1): 187-207 [7] Chung J, Kim Y J, Kim E.Asymptotic agreement of moments and higher order asymptotics in the Burgers equation. J Differential Equations, 2010, 248(10): 2417-2434 [8] Ding X, Jiu Q, He C.On a nonhomogeneous burgers equation. Sci China Ser A, 2001, 44(8): 984-993 [9] Rao C S, Yadav M K.Solutions of a nonhomogeneous burgers equation. Stud Appl Math, 2010 124(4): 411-422 [10] Engu S, Ahmed M, Murugan V.Large time asymptotics with error estimates to solutions of a forced burgers equation. Stud Appl Math, 2017, 138(2): 185-204 [11] Engu S, Sahoo M R, Berke V P.Solutions to viscous Burgers equations with time dependent source term. Electronic J Diff Eqns, 2021, 2021(2): 1-16 [12] Ding X, Ding Y.Viscosity method of a non-homogeneous Burgers equation. Acta Math Sci, 2003, 23B(4): 567-576 [13] Xu T, Zhang C Y, Li J, et al.Symbolic computation on generalized Hopf-Cole transformation for a forced burgers model with variable coefficients from fluid dynamics. Wave Motion, 2007, 44(4): 262-270 [14] Kloosterziel R C.On the large-time asymptotics of the diffusion equation on infinite domains. J Engrg Math, 1990, 24(3): 213-236 [15] Joseph K T, Sahoo M R.Some exact solutions of 3-dimensional zero-pressure gas dynamics system. Acta Math Sci, 2011, 31B(6): 2107-2121 [16] Joseph K T, Sahoo M R.Vanishing viscosity approach to a system of conservation laws admitting δ''- waves. Commun Pure Appl Anal, 2013, 12(5): 2091-2118 [17] Lu Y G, Klingenberg C, Koley U, Lu X Z.Decay rate for degenerate convection diffusion equations in both one and several space dimensions. Acta Math Sci, 2015, 35B(2): 281-302 [18] Jager W, Lu Y G.Global regularity of solutions for general degenerate parabolic equations in 1-D. J Differential Equations, 1997, 140(2): 365-377 [19] Jager W, Lu Y G.On solutions to nonlinear reaction-diffusion-convection equations with degenerate diffu- sion. J Differential Equations, 2001, 170(1): 1-21 [20] Abramowitz M, Stegun I A.Handbook of Mathematical Functions With Formulas Graphs, and Mathemat- ical Tables. Washington: US Government Printing Office, 1964 [21] Olver F.Asymptotics and Special Functions. Boca Raton: CRC Press, 1997 |
[1] | Liangliang Mia, Yanhong Chen, Xiao Xiao, Yijun Hu. ANTICIPATED BACKWARD STOCHASTIC VOLTERRA INTEGRAL EQUATIONS WITH JUMPS AND APPLICATIONS TO DYNAMIC RISK MEASURES* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1365-1381. |
[2] | Nacira AGRAM, Saloua LABED, Bernt ØKSENDAL, Samia YAKHLEF. SINGULAR CONTROL OF STOCHASTIC VOLTERRA INTEGRAL EQUATIONS [J]. Acta mathematica scientia,Series B, 2022, 42(3): 1003-1017. |
[3] | Pankaj JAIN, Chandrani BASU, Vivek PANWAR. ON THE (p,q)-MELLIN TRANSFORM AND ITS APPLICATIONS [J]. Acta mathematica scientia,Series B, 2021, 41(5): 1719-1732. |
[4] | Yu XIAO, Jian XU, Engui FAN. THE INITIAL BOUNDARY VALUE PROBLEMS FOR A NONLINEAR INTEGRABLE EQUATION WITH 3×3 LAX PAIR ON THE FINITE INTERVAL [J]. Acta mathematica scientia,Series B, 2021, 41(5): 1733-1748. |
[5] | Nguyen Tien DUNG. ITÔ DIFFERENTIAL REPRESENTATION OF SINGULAR STOCHASTIC VOLTERRA INTEGRAL EQUATIONS [J]. Acta mathematica scientia,Series B, 2020, 40(6): 1989-2000. |
[6] | Weishan ZHENG, Yanping CHEN. NUMERICAL ANALYSIS FOR VOLTERRA INTEGRAL EQUATION WITH TWO KINDS OF DELAY [J]. Acta mathematica scientia,Series B, 2019, 39(2): 607-617. |
[7] | Jiankai XU, Zhong TAN, Weiwei WANG, Zepeng XIONG. A NECESSARY CONDITION FOR CERTAIN INTEGRAL EQUATIONS WITH NEGATIVE EXPONENTS [J]. Acta mathematica scientia,Series B, 2019, 39(1): 284-296. |
[8] | Wei DAI, Zhao LIU. CLASSIFICATION OF POSITIVE SOLUTIONS TO A SYSTEM OF HARDY-SOBOLEV TYPE EQUATIONS [J]. Acta mathematica scientia,Series B, 2017, 37(5): 1415-1436. |
[9] | Yunxia WEI, Yanping CHEN. LEGENDRE SPECTRAL COLLOCATION METHOD FOR VOLTERRA-HAMMERSTEIN INTEGRAL EQUATION OF THE SECOND KIND [J]. Acta mathematica scientia,Series B, 2017, 37(4): 1105-1114. |
[10] | Juan J. NIETO, Bessem SAMET. SOLVABILITY OF AN IMPLICIT FRACTIONAL INTEGRAL EQUATION VIA A MEASURE OF NONCOMPACTNESS ARGUMENT [J]. Acta mathematica scientia,Series B, 2017, 37(1): 195-204. |
[11] | Jun GUO, Lili FAN, Guozheng YAN. THE BOUNDARY INTEGRAL METHOD FOR THE HELMHOLTZ EQUATION WITH CRACKS INSIDE A BOUNDED DOMAIN [J]. Acta mathematica scientia,Series B, 2015, 35(3): 539-551. |
[12] | A. AGHAJANI, M. MURSALEEN, A. SHOLE HAGHIGHI. FIXED POINT THEOREMS FOR MEIR-KEELER CONDENSING OPERATORS VIA MEASURE OF NONCOMPACTNESS [J]. Acta mathematica scientia,Series B, 2015, 35(3): 552-566. |
[13] | Monica COSENTINO, Peyman SALIMI, Pasquale VETRO. FIXED POINT RESULTS ON METRIC-TYPE SPACES [J]. Acta mathematica scientia,Series B, 2014, 34(4): 1237-1253. |
[14] | DEEPMALA, H.K. PATHAK. A STUDY ON SOME PROBLEMS ON EXISTENCE OF SOLUTIONS FOR NONLINEAR FUNCTIONAL-INTEGRAL EQUATIONS [J]. Acta mathematica scientia,Series B, 2013, 33(5): 1305-1313. |
[15] | Le Thi Phuong Ngoc, Nguyen Thanh Long. ON A NONLINEAR VOLTERRA-HAMMERSTEIN INTEGRAL EQUATION IN TWO VARIABLES [J]. Acta mathematica scientia,Series B, 2013, 33(2): 484-494. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 6
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 36
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|