Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (3): 1301-1322.doi: 10.1007/s10473-023-0317-y
Previous Articles Next Articles
Yuhui Chen1, Qinghe Yao1, Minling Li2,†, Zheng-an Yao2
Received:
2022-02-11
Revised:
2022-06-10
Online:
2023-06-25
Published:
2023-06-06
Contact:
† Minling Li, E-mail: limling3@mail2.sysu.edu.cn
About author:
Yuhui Chen, E-mail: chenyh339@mail.sysu.edu.cn; Qinghe Yao, E-mail: yaoqhe@mail.sysu.edu.cn;Zheng-an Yao,E-mail: mcsyao@mail.sysu.edu.cn
Supported by:
Yuhui Chen, Qinghe Yao, Minling Li, Zheng-an Yao. GLOBAL WELL-POSEDNESS AND OPTIMAL TIME DECAY RATES FOR THE GENERALIZED PHAN-THIEN-TANNER MODEL IN ${\mathbb{R}}^{3}$*[J].Acta mathematica scientia,Series B, 2023, 43(3): 1301-1322.
[1] Barrett J W, Lu Y, Süuli E.Existence of large-data finite-energy global weak solutions to a compressible Oldroyd-B model. Commun Math Sci, 2017, 15(5): 1265-1323 [2] Barrett J W, Süuli E.Existence and equilibration of global weak solutions to kinetic models for dilute polymers I: Finitely extensible nonlinear bead-spring chains. Math Models Methods Appl Sci, 2011, 21(6): 1211-1289 [3] Barrett J W, Süuli E.Existence and equilibration of global weak solutions to kinetic models for dilute polymers II: Hookean-type bead-spring chains. Math Models Methods Appl Sci, 2012, 22(5): 1150024 [4] Bautista O, Sánchez S, Arcos J C, Méndez F.Lubrication theory for electroosmotic flow in a slit microchannel with the Phan-Thien and Tanner model. J Fluid Mech, 2013, 722: 496-532 [5] Chemin J Y, Masmoudi N.About lifespan of regular solutions of equations related to viscoelastic fluids. SIAM J Math Anal, 2001, 33(1): 84-112 [6] Chen Q L, Miao C X.Global well-posedness of viscoelastic fluids of Oldroyd type in Besov spaces. Nonlinear Anal, 2008, 68(7): 1928-1939 [7] Chen Y H, Li M L, Yao Q H, Yao Z A. Global well-posedness for the three-dimensional generalized Phan- Thien-Tanner model in critical Besov spaces. J Math Fluid Mech, 2021, 23: Art 55 [8] Chen Y H, Li M L, Yao Q H, Yao Z A.The sharp time decay rates and stability of large solutions to the two-dimensional Phan-Thien-Tanner system with magnetic field. Asymptot Anal, 2022, 129(3/4): 451-484 [9] Chen Y H, Luo W, Yao Z A.Blow up and global existence for the periodic Phan-Thein-Tanner model. J Differential Equations, 2019, 267(11): 6758-6782 [10] Chen Y H, Luo W, Yao Z A.Global existence and optimal time decay rates for the three-dimensional incompressible Phan-Thien-Tanner model. Anal Appl (Singap), 2022. DOI:10.1142/S0219530522500051 [11] Chen Y M, Zhang P.The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions. Comm Partial Differential Equations, 2006, 31(12): 1793-1810 [12] Fang D Y, Zi R Z.Global solutions to the Oldroyd-B model with a class of large initial data. SIAM J Math Anal, 2016, 48(2): 1054-1084 [13] Feng Z F, Zhu C J and Zi R Z. Blow-up criterion for the incompressible viscoelastic flows. J Funct Anal, 2017, 272(9): 3742-3762 [14] Fernández-Cara E, Guillén F, Ortega R R.Some theoretical results concerning non-Newtonian fluids of the Oldroyd kind. Ann Scuola Norm Sup Pisa CI Sci, 1998, 26(1): 1-29 [15] Garduňo I E, Tamaddon-Jahromi H R, Walters K, Webster M F. The interpretation of a long-standing rheological flow problem using computational rheology and a PTT constitutive model. J Non-Newton Fluid Mech, 2016, 233: 27-36 [16] Guillopé C, Saut J C.Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal, 1990, 15(9): 849-869 [17] Guillopé C, Saut J C.Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type. RAIRO Modél Math Anal Numér, 1990, 24(3): 369-401 [18] He L B, Xu L.Global well-posedness for viscoelastic fluid system in bounded domains. SIAM J Math Anal, 2010, 42(6): 2610-2625 [19] Hieber M, Wen H Y, Zi R Z.Optimal decay rates for solutions to the incompressible Oldroyd-B model in R3. Nonlinearity, 2019, 32(3): 833-852 [20] Hu X P, Wang D H.Strong solutions to the three-dimensional compressible viscoelastic fluids. J Differential Equations, 2012, 252(6): 4027-4067 [21] Hu X P, Wu G C.Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows. SIAM J Math Anal, 2013, 45(5): 2815-2833 [22] Huang J R, Wang Y H, Wen H Y, Zi R Z.Optimal time-decay estimates for an Oldroyd-B model with zero viscosity. J Differential Equations, 2022, 306: 456-491 [23] Jiang F, Jiang S.Strong solutions of the equations for viscoelastic fluids in some classes of large data. J Differential Equations, 2021, 282: 148-183 [24] Lei Z, Liu C, Zhou Y.Global solutions for incompressible viscoelastic fluids. Arch Ration Mech Anal, 2008, 188(3): 371-398 [25] Lei Z, Masmoudi N, Zhou Y.Remarks on the blowup criteria for Oldroyd models. J Differential Equations, 2010, 248(2): 328-341 [26] Lin F H, Liu C, Zhang P.On hydrodynamics of viscoelastic fluids. Comm Pure Appl Math, 2005, 58(11): 1437-1471 [27] Lin F H, Zhang P.On the initial-boundary value problem of the incompressible viscoelastic fluid system. Comm Pure Appl Math, 2008, 61(4): 539-558 [28] Lions P L, Masmoudi N.Global solutions for some Oldroyd models of non-Newtonian flows. Chinese Ann Math Ser B, 2000, 21(2): 131-146 [29] Lu Y, Pokorný M.Global existence of large data weak solutions for a simplified compressible Oldroyd-B model without stress diffusion. Anal Theory Appl, 2020, 36(3): 348-372 [30] Lu Y, Zhang Z F.Relative entropy, weak-strong uniqueness, and conditional regularity for a compressible Oldroyd-B model. SIAM J Math Anal, 2018, 50(1): 557-590 [31] Masmoudi N.Global existence of weak solutions to macroscopic models of polymeric flows. J Math Pures Appl, 2011, 96(5): 502-520 [32] Mu Y, Zhao G, Wu X, Zhai J.Modeling and simulation of three-dimensional planar contraction flow of viscoelastic fluids with PTT, Giesekus and FENE-P constitutive models. Appl Math Comput, 2012, 218(17): 8429-8443 [33] Oliveira P J, Pinho F T.Analytical solution for fully developed channel and pipe flow of Phan-Thien-Tanner fluids. J Fluid Mech, 1999, 387: 271-280 [34] Omowunmi S C, Yuan X F.Time-dependent non-linear dynamics of polymer solutions in microfluidic contraction flow a numerical study on the role of elongational viscosity. Rheol Acta, 2013, 52: 337-354 [35] Phan-Thien N.A nonlinear network viscoelastic model. J Rheol, 1978, 22(3): 259-283 [36] Phan-Thien N, Tanner R I.A new constitutive equation derived from network theory. J Non-Newton Fluid Mech, 1977, 2(4): 353-365 [37] Qian J Z, Zhang Z F.Global well-posedness for compressible viscoelastic fluids near equilibrium. Arch Ration Mech Anal, 2010, 198(3): 835-868 [38] Sun Y Z, Zhang Z F.Global well-posedness for the 2D micro-macro models in the bounded domain. Comm Math Phys, 2011, 303(2): 361-383 [39] Wang W J, Wen H Y.The Cauchy problem for an Oldroyd-B model in three dimensions. Math Models Methods Appl Sci, 2020, 30(1): 139-179 [40] Zhang T, Fang D Y.Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical [41] Zhou Z S, Zhu C J, Zi R Z.Global well-posedness and decay rates for the three dimensional compressible Oldroyd-B model. J Differential Equations, 2018, 265(4): 1259-1278 [42] Zhu Y.Global small solutions of 3D incompressible Oldroyd-B model without damping mechanism. J Funct Anal, 2018, 274(7): 2039-2060 [43] Zi R Z, Fang D Y, Zhang T.Global solution to the incompressible Oldroyd-B model in the critical Lp framework: The case of the non-small coupling parameters. Arch Ration Mech Anal, 2014, 213(2): 651-687 |
[1] | Changxing MIAO, Junyong ZHANG, Jiqiang ZHENG. A NONLINEAR SCHRÖDINGER EQUATION WITH COULOMB POTENTIAL [J]. Acta mathematica scientia,Series B, 2022, 42(6): 2230-2256. |
[2] | Weixi LI, Rui XU, Tong YANG. GLOBAL WELL-POSEDNESS OF A PRANDTL MODEL FROM MHD IN GEVREY FUNCTION SPACES [J]. Acta mathematica scientia,Series B, 2022, 42(6): 2343-2366. |
[3] | Qingyou He, Jiawei Sun. LARGE TIME BEHAVIOR OF THE 1D ISENTROPIC NAVIER-STOKES-POISSON SYSTEM [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1843-1874. |
[4] | Wenjun WANG, Zhen CHENG. LARGE TIME BEHAVIOR OF GLOBAL STRONG SOLUTIONS TO A TWO-PHASE MODEL WITH A MAGNETIC FIELD [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1921-1946. |
[5] | Jinlu LI, Zhaoyang YIN, Xiaoping ZHAI. GLOBAL WELL-POSEDNESS FOR THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS [J]. Acta mathematica scientia,Series B, 2022, 42(5): 2131-2148. |
[6] | Xueting Jin, Yuelong Xiao, Huan Yu. GLOBAL WELL-POSEDNESS OF THE 2D BOUSSINESQ EQUATIONS WITH PARTIAL DISSIPATION [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1293-1309. |
[7] | Ruiying WEI, Yin LI, Zheng-an YAO. THE GLOBAL EXISTENCE AND A DECAY ESTIMATE OF SOLUTIONS TO THE PHAN-THEIN-TANNER MODEL [J]. Acta mathematica scientia,Series B, 2022, 42(3): 1058-1080. |
[8] | Leilei TONG, Zhong TAN, Xu ZHANG. THE TIME DECAY RATES OF THE CLASSICAL SOLUTION TO THE POISSON-NERNST-PLANCK-FOURIER EQUATIONS IN $\mathbb{R}^3$ [J]. Acta mathematica scientia,Series B, 2022, 42(3): 1081-1102. |
[9] | Yiming HE, Ruizhao ZI. ENERGY CONSERVATION FOR SOLUTIONS OF INCOMPRESSIBLE VISCOELASTIC FLUIDS [J]. Acta mathematica scientia,Series B, 2021, 41(4): 1287-1301. |
[10] | Tingting CHEN, Aifang QU, Zhen WANG. EXISTENCE AND UNIQUENESS OF THE GLOBAL L1 SOLUTION OF THE EULER EQUATIONS FOR CHAPLYGIN GAS [J]. Acta mathematica scientia,Series B, 2021, 41(3): 941-958. |
[11] | Muhammad Zainul ABIDIN, Jiecheng CHEN. GLOBAL WELL-POSEDNESS FOR FRACTIONAL NAVIER-STOKES EQUATIONS IN VARIABLE EXPONENT FOURIER-BESOV-MORREY SPACES [J]. Acta mathematica scientia,Series B, 2021, 41(1): 164-176. |
[12] | Wenxuan ZHENG, Zhong TAN. THE DECAY ESTIMATES FOR MAGNETOHYDRODYNAMIC EQUATIONS WITH COULOMB FORCE [J]. Acta mathematica scientia,Series B, 2020, 40(6): 1928-1940. |
[13] | Shijin DING, Bingyuan HUANG, Quanrong LI. GLOBAL EXISTENCE AND DECAY ESTIMATES FOR THE CLASSICAL SOLUTIONS TO A COMPRESSIBLE FLUID-PARTICLE INTERACTION MODEL [J]. Acta mathematica scientia,Series B, 2019, 39(6): 1525-1537. |
[14] | Yin LI, Ruiying WEI, Zheng-an YAO. GLOBAL EXISTENCE AND OPTIMAL CONVERGENCE RATES OF SOLUTIONS FOR THREE-DIMENSIONAL ELECTROMAGNETIC FLUID SYSTEM [J]. Acta mathematica scientia,Series B, 2019, 39(2): 469-490. |
[15] | Shibin SU, Xiaokui ZHAO. GLOBAL WELLPOSEDNESS OF MAGNETOHYDRODYNAMICS SYSTEM WITH TEMPERATURE-DEPENDENT VISCOSITY [J]. Acta mathematica scientia,Series B, 2018, 38(3): 898-914. |
|