[1] Agarwal R, Meehan M, O'Regan D. Fixed point theory and applications. Cambridge University Press, 2004
[2] Aghajani A, Bana's J, Jalilian Y. Existence of solution for a class nonlinear Voltrra sigular integral. Com- puter and Mathematics with Applications, 2011, 62: 1215-1227
[3] Aghajani A, Jalilian Y. Existence and global attractivity of solutions of a nonlinear functional integral equation. Commun Nonlinear Sci Numer Simulat, 2010, 15: 3306-3312
[4] Aghajani A, Jalilian Y. Existence of nondecreasing positive solution for a system of sigular integral. 2011, 8: 563-586; Equations, Mediter J Math, 2010
[5] Aghajani A, Sabzali N. Existence of coupled fixed points via measure of noncompactness and applications. Journal of Nonlinear and Convex Analysis (To appear)
[6] Aghajani A, Shole Haghighi A. Existence of solutions for a class of functional integral equations of Volterra type in two variables via measure of noncompactness. IJST, 2014, 38A1: 1-8
[7] Akhmerov R R, Kamenski M I, Potapov A S, Rodkina A E, Sadovskii B N. Measures of Noncompactness and Condensing Operators. Basel: Birkhauser Verlag, 1992
[8] Banach S. Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales. Fund Math, 1922, 3: 133-181
[9] Banas J, Dhage B C. Global asymptotic stability of solutions of a functional integral equation. Nonlinear Anal, 2008, 69: 1945-1952
[10] Banas J, Goebel K. Measures of Noncompactness in Banach Spaces//Lecture Notes in Pure and Applied Mathematics, Vol 60. New York: Dekker, 1980
[11] Banas J, O'Regan D, Sadarangani K. On solutions of a quadratic hammerstein integral equation on an unbounded interval. Dynamic Systems and Applications, 2009, 18: 251-264
[12] Banas J, Rzepka R. An application of a measure of noncompactness in the study of asymptotic stability. Appl Math Lett, 2003, 16: 1-6
[13] Banas J, Sadarangani K. Compactness Conditions in the Study of Functional. Differential, and Integral Equations, Volume 2013 (2013), Article ID 819315, 14 pages, doi: 10.1155/2013/819315
[14] Chang S S, Cho Y J, Huang N J. Coupled Fixed Point Theorems With Applications. J Korean Math Soc, 1996, 33(3): 575-585
[15] Darbo G. Punti uniti in trasformazioni a codominio non compatto. Rend Sem Mat Univ Padova, 1955, 24: 84-92
[16] Darwish M A, Henderson J, O'Regan D. Exsstence and asymptotic stability of solutions of a perturbed fracttional functional-integral equation with linear modification of the arrgument. Korean Math Soc, 2011, 48: 539-553
[17] Dhage B C, Bellale S S. Local asymptotic stability for nonlinear Quadratic functional integral equations. Electronic Journal Qualitative Theory of Differential Equatctions, 2008, (10): 1-13
[18] Djebali S, O'Regan D, Sahnoun Z. On the solvability of some operator equations and inclusions in Banach spaces with the weak topology. Applied Analysis, 2011, 15: 125-140
[19] Garca-Falset J. Existence of fixed points and measures of weak noncompactness. Nonlinear Anal, 2009, 71: 2625-2633
[20] Kuratowski K. Sur les espaces. Fund Math, 1930, 15: 301-309
[21] Lim T C. On characterizations of Meir-Keeler contractive maps. Nonlinear Anal, 2001, 46: 113-120
[22] Meir A, Keeler E. A theorem on contraction mappings. J Math Anal Appl, 1969, 28: 326-329
[23] Mursaleen M, Alotaibi A. Infinite system of differential equations in some BK spaces. Abstract Appl Anal, Volume 2012 (2012), Article ID 863483, 20 pages, doi:10.1155/2012/863483
[24] Suzuki T. Several fixed point theorems in complete metric spaces. Yokohama Math J, 1997, 44: 61-72
[25] Suzuki T. Several fixed point theorems concerning -distance. Fixed Point Theory Appl, 2004: 195-209
[26] Suzuki T. Fixed-point theorem for asymptotic contractions of Meir-Keeler type in complete metric spaces. Nonlinear Anal, 2006, 64: 971-978
[27] Xiao J Z, Zhu X H, Shen Z M. Common coupled fixed point results for hybrid nonlinear contraction in metric spaces. Fixed Point Theory, 2013, 14(1): 235-250 |