Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (3): 1333-1346.doi: 10.1007/s10473-023-0319-9
Previous Articles Next Articles
Xiaoguang You1, Aibin Zang2
Received:
2021-11-18
Revised:
2022-03-11
Online:
2023-06-25
Published:
2023-06-06
About author:
Xiaoguang You, E-mail: wiliam_you@aliyun.com;Aibin Zang, E-mail: zangab05@126.com
Supported by:
Xiaoguang You, Aibin Zang. THE SINGULAR LIMIT OF SECOND-GRADE FLUID EQUATIONS IN A 2D EXTERIOR DOMAIN*[J].Acta mathematica scientia,Series B, 2023, 43(3): 1333-1346.
[1] Borchers W, Varnhorn W.On the boundedness of the Stokes semigroup in two-dimensional exterior do- mains. Math Z, 1993, 213: 275-299 [2] Bresch D, Lemoine J.Sur l'existence et l'unicité de solution des fluides de grade 2 ou 3. C R Acad Sci Paris Ser I Math, 1997, 324: 605-610 [3] Busuioc A V.On second grade fluids with vanishing viscosity. C R Acad Sci Ser I Math, 1999, 328: 1241-1246 [4] Busuioc A V, Iftimie D, Lopes Filho M C, et al. Incompressible Euler as a limit of complex fluid models with Navier boundary conditions. J Differ Equations, 2012, 252: 624-640 [5] Cioranescu D, Girault V.Weak and classical solutions of a family of second grade fluids. Int J Nonlin Mech, 1997, 32: 317-335 [6] Cioranescu D, Ouazar E H.Existence and uniqueness for fluids of second grade. Nonlinear Differ Equ Appl, 1984, 109: 178-197 [7] Dunn J E, Fosdick R L.Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade. Arch Ration Mech Anal, 1974, 56: 191-252 [8] Fosdick R, Rajagopal K.Anomalous features in the model of second order fluids. Arch Ration Mech Anal, 1979, 70: 145-152 [9] Galdi G P.An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems. New York: Springer-Verlag, 2011 [10] Giga G, Novotný A. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Berlin: Springer, 2018 [11] Kikuchi K.Exterior problem for the two-dimensional Euler equation. J Fac Sci Univ Tokyo Sect IA Math, 1983, 30: 63-92 [12] Linshiz J S, Titi E S.On the convergence rate of the Euler-α, an inviscid second-grade complex fluid, model to the Euler equations. J Stat Phys, 2010, 138: 305-332 [13] Liu J, Xu W Q.Vanishing α and viscosity limits of second grade fluid equations for an expanding domain in the plane. Nonlinear Analysis: RWA, 2019, 49: 355-367 [14] Lopes Filho M C, Lopes H J N, Titi E S, et al. Approximation of 2D Euler equations by the second-grade fluid equations with Dirichlet boundary conditions. J Math Fluid Mech, 2015, 17: 327-340 [15] Lopes Filho M C, Nussenzveig Lopes H J, Titi E S, et al. Convergence of the 2D Euler-α to Euler equations in the Dirichlet case: indifference to boundary layers. Physica D, 2015, 292: 51-61 [16] Paicu M, Raugel G.Dynamics of second grade fluids: the Lagrangian approach[C]//Johann A, Kruse H P, Rupp F, et al. Recent Trends in Dynamical Systems. Basel: Springer, 2013: 517-553 [17] Paicu M, Raugel G, Rekalo A.Regularity of the global attractor and finite-dimensional behavior for the second grade fluid equations. J Differ Equations, 2012, 252: 3695-3751 [18] Rivlin R S, Ericksen J L.Stress-Deformation Relations for Isotropic Materials//Barenblatt G I, Joseph D D. Collected Papers of RS Rivlin: Volume I and II. New York: Springer, 1997: 911-1013 [19] You X, Zang A.Global well-posedness of second-grade fluid equations in 2D exterior domain. Acta Appl Math, 2022, 182: 1-19 [20] You X, Zang A, Li Y.Global well-posedness of 2D Euler-α equations in exterior domain. Nonlinearity, 2022, 35: 5852-5879 [21] Zhou H. |
[1] | Shifeng GENG, Feimin HUANG, Xiaochun WU. L2-CONVERGENCE TO NONLINEAR DIFFUSION WAVES FOR EULER EQUATIONS WITH TIME-DEPENDENT DAMPING [J]. Acta mathematica scientia,Series B, 2022, 42(6): 2505-2522. |
[2] | Sijie LIU, Wancheng SHENG. THE STABILITY OF THE DELTA WAVE TO PRESSURELESS EULER EQUATIONS WITH VISCOUS AND FLUX PERTURBATIONS [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1519-1535. |
[3] | Shangkun WENG, Zihao ZHANG. TWO DIMENSIONAL SUBSONIC AND SUBSONIC-SONIC SPIRAL FLOWS OUTSIDE A POROUS BODY [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1569-1584. |
[4] | Ning-An LAI, Wei XIANG, Yi ZHOU. GLOBAL INSTABILITY OF MULTI-DIMENSIONAL PLANE SHOCKS FOR ISOTHERMAL FLOW [J]. Acta mathematica scientia,Series B, 2022, 42(3): 887-902. |
[5] | Tuowei CHEN, Yongqian ZHANG. A STRONG SOLUTION OF NAVIER-STOKES EQUATIONS WITH A ROTATION EFFECT FOR ISENTROPIC COMPRESSIBLE FLUIDS [J]. Acta mathematica scientia,Series B, 2021, 41(5): 1579-1605. |
[6] | Tingting CHEN, Aifang QU, Zhen WANG. EXISTENCE AND UNIQUENESS OF THE GLOBAL L1 SOLUTION OF THE EULER EQUATIONS FOR CHAPLYGIN GAS [J]. Acta mathematica scientia,Series B, 2021, 41(3): 941-958. |
[7] | Weifeng JIANG, Zhen WANG. THE EXISTENCE OF A BOUNDED INVARIANT REGION FOR COMPRESSIBLE EULER EQUATIONS IN DIFFERENT GAS STATES [J]. Acta mathematica scientia,Series B, 2020, 40(5): 1229-1239. |
[8] | Hairong YUAN. TIME-PERIODIC ISENTROPIC SUPERSONIC EULER FLOWS IN ONE-DIMENSIONAL DUCTS DRIVING BY PERIODIC BOUNDARY CONDITIONS [J]. Acta mathematica scientia,Series B, 2019, 39(2): 403-412. |
[9] | Gui-Qiang G. CHEN, Matthew RIGBY. STABILITY OF STEADY MULTI-WAVE CONFIGURATIONS FOR THE FULL EULER EQUATIONS OF COMPRESSIBLE FLUID FLOW [J]. Acta Mathematica Scientia, 2018, 38(5): 1485-1514. |
[10] | Nihed TRABELSI. SINGULAR LIMIT SOLUTIONS FOR 2-DIMENSIONAL ELLIPTIC SYSTEM WITH SUB-QUADRTATIC CONVECTION TERM [J]. Acta mathematica scientia,Series B, 2018, 38(4): 1174-1194. |
[11] | Fei HOU. ON THE GLOBAL EXISTENCE OF SMOOTH SOLUTIONS TO THE MULTI-DIMENSIONAL COMPRESSIBLE EULER EQUATIONS WITH TIME-DEPENDING DAMPING IN HALF SPACE [J]. Acta mathematica scientia,Series B, 2017, 37(4): 949-964. |
[12] | Wentao CAO, Feimin HUANG, Tianhong LI, Huimin YU. GLOBAL ENTROPY SOLUTIONS TO AN INHOMOGENEOUS ISENTROPIC COMPRESSIBLE EULER SYSTEM [J]. Acta mathematica scientia,Series B, 2016, 36(4): 1215-1224. |
[13] | Zhengzheng CHEN, Xiaojuan CHAI, Wenjuan WANG. CONVERGENCE RATE OF SOLUTIONS TO STRONG CONTACT DISCONTINUITY FOR THE ONE-DIMENSIONAL COMPRESSIBLE RADIATION HYDRODYNAMICS MODEL [J]. Acta mathematica scientia,Series B, 2016, 36(1): 265-282. |
[14] | Yu CHEN, Yi ZHOU. SIMPLE WAVES OF THE TWO DIMENSIONAL COMPRESSIBLE FULL EULER EQUATIONS [J]. Acta mathematica scientia,Series B, 2015, 35(4): 855-875. |
[15] | ZHANG Ying-Hui, WU Guo-Chun. GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR FOR THE 3D COMPRESSIBLE NON–ISENTROPIC EULER EQUATIONS WITH DAMPING [J]. Acta mathematica scientia,Series B, 2014, 34(2): 424-434. |
|