[1] Li P, Yau S T. On the parabolic kernel of the Schr odinger operator. Acta Math, 1986, 156(3/4):153-201 [2] Bakry D, Qian Z M. Harnack inequalities on a manifold with positive or negative Ricci curvature. Rev Mat Iberoamericana, 1999, 15(1):143-179 [3] Bakry D, Ledoux M. A logarithmic Sobolev form of the Li-Yau parbolic inequality. Rev Mat Iberoam, 2006, 22(2):683-702 [4] Cao X, Fayyazuddin L B, Liu B. Differential Harnack estimates for a nonlinear heat equation. J Funct Anal, 2013, 265(10):2312-2330 [5] Yau S T. On the Harnack inequalities of partial differential equations. Comm Anal Geom, 1994, 2(3):431-450 [6] Yau S T. Harnack inequality for non-self-adjoint evolution equations. Math Res Lett, 1995, 2(4):387-399 [7] Zhang H-C, Zhu X-P. Local Li-Yau's estimates on RCD* (K, N) metric measure spaces. Calc Var Partial Differential Equations, 2016, 55(4):Paper No. 93, 30 pp [8] Carron G. Geometric inequalities for manifolds with Ricci curvature in the Kato class. arXiv:1612.03027 [9] Rose C. Li-Yau gradient estimate for compact manifolds with negative part of Ricci curvature in the Kato class. arXiv:1608.04221 [10] Zhang Qi S, Zhu M. Li-Yau gradient bounds under nearly optimal curvature conditions. http://arxiv.org/pdf/1511.00791v2 [11] Zhang Qi S, Zhu M. Li-Yau gradient bound for collapsing manifolds under integral curvature condition. Proc Amer Math Soc, 2017, 145(7):3117-3126 [12] Hamilton Richard S. A matrix Harnack estimate for the heat equation. Comm Anal Geom, 1993, 1(1):113-126 [13] Cao H-D, Ni L. Matrix Li-Yau-Hamilton estimates for the heat equation on Kähler manifolds. Math Ann, 2005, 331(4):795-807 [14] Hamilton Richard S. The Harnack estimate for the Ricci flow. J Differential Geom, 1993, 37(1):225-243 [15] Cao H-D. On Harnack's inequalities for the Kähler-Ricci flow. Invent Math, 1992, 109(2):247-263 [16] Ni L, Niu Y. Sharp differential estimates of Li-Yau-Hamilton type for positive (p, p)-forms on Kähler manifolds. Comm Pure Appl Math, 2011, 64(7):920-974 [17] Chow B, Hamilton Richard S. Constrained and linear Harnack inequalities for parabolic equations. Invent Math, 1997, 129(2):213-238 [18] Ren X-A, Yao S, Shen L-J, Zhang G-Y. Constrained matrix Li-Yau-Hamilton estimates on Kähler manifolds. Math Ann, 2015, 361(3/4):927-941 [19] Perelman G. The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159 [20] Davies E B. Heat kernels and spectral theory. Cambridge:Cambridge University Press, 1990 [21] Li J, Xu X. Differential Harnack inequalities on Riemannian manifolds I:linear heat equation. Adv Math, 2011, 226(5):4456-4491 [22] Bakry D, Bolley F, Gentil I. The Li-Yau inequality and applications under a curvature-dimension condition. Ann Inst Fourier (Grenoble), 2017, 67(1):397-421 [23] Qian B. Remarks on differential Harnack inequalities. J Math Anal Appl, 2014, 409(1):556-566 |