[1] Balan Raluca M, Le Chen. Parabolic Anderson model with space-time homogeneous Gaussian noise and rough initial condition. J Theoret Probab, 2018, 31(4):2216-2265 [2] Carmona René A, Stanislav A Molchanov. Parabolic Anderson problem and intermittency. Mem Amer Math Soc, 1994, 108(518) [3] Chen Le. Moments, intermittency, and growth indices for nonlinear stochastic PDE's with rough initial conditions. PhD Thesis, No 5712. École Polytechnique Fédérale de Lausanne, 2013 [4] Chen Le, Robert C Dalang. Moments and growth indices for nonlinear stochastic heat equation with rough initial conditions. Ann Probab, 2015, 43(6):3006-3051 [5] Chen Le, Jingyu Huang. Comparison principle for stochastic heat equation on Rd. Ann Probab, 2019, 47(2):989-1035. arXiv:1607.03998(2016) [6] Chen Le, Yaozhong Hu, David Nualart. Two-point correlation function and Feynman-Kac formula for the stochastic heat equation. Potential Anal, 2017, 46(4):779-793 [7] Chen Le, Kunwoo Kim. On comparison principle and strict positivity of solutions to the nonlinear stochastic fractional heat equations. Ann Inst Henri Poincar Probab Stat, 2017, 53(1):358-388 [8] Chen Xia. Moment asymptotics for parabolic Anderson equation with fractional time-space noise:Skorokhod regime. Ann Inst Henri Poincar Probab Stat, 2017, 53(2):819-841 [9] Conus Daniel, Davar Khoshnevisan. On the existence and position of the farthest peaks of a family of stochastic heat and wave equations. Probab Theory Related Fields, 2012, 152(3/4):681-701 [10] Dalang Robert C. Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.'s. Electron J Probab, 1999, 4(6):29 pp [11] Dalang Robert C, Nicholas E Frangos. The stochastic wave equation in two spatial dimensions. Ann Probab, 1998, 26(1):187-212 [12] Foondun Mohammud, Davar Khoshnevisan. Intermittence and nonlinear parabolic stochastic partial differential equations. Electron J Probab, 2009, 14(21):548-568 [13] Foondun Mohammud, Davar Khoshnevisan. On the stochastic heat equation with spatially-colored random forcing. Trans Amer Math Soc, 2013, 365(1):409-458 [14] Foondun Mohammud, Davar Khoshnevisan. Corrections and improvements to:"On the stochastic heat equation with spatially-colored random forcing". Trans Amer Math Soc, 2014, 366(1):561-562 [15] Foondun Mohammud, Wei Liu, McSylvester Omaba. Moment bounds for a class of fractional stochastic heat equations. Ann Probab, 2017, 45(4):2131-2153 [16] Huang Jingyu. On stochastic heat equation with measure initial data. Electron Commun Probab, 2017, 22(40):6 pp [17] Huang Jingyu, Khoa Lê, David Nualart. Large time asymptotics for the parabolic Anderson model driven by spatially correlated noise. Ann Inst Henri Poincaré Probab Stat, 2017, 53(3):1305-1340 [18] Khoshnevisan Davar. Analysis of stochastic partial differential equations. CBMS Regional Conference Series in Mathematics, 119. Published for the Conference Board of the Mathematical Sciences, Washington, DC. Providence, RI:the American Mathematical Society, 2014:viii+116 pp [19] Khoshnevisan Davar, Kunwoo Kim. Non-linear noise excitation of intermittent stochastic PDEs and the topology of LCA groups. Ann Probab, 2015, 43(4):1944-1991 [20] Mueller Carl. On the support of solutions to the heat equation with noise. Stoch & Stoch Rep, 1991, 37(4):225-245 [21] Noble John M. Evolution equation with Gaussian potential. Nonlinear Anal, 1997, 28(1):103-135 [22] Podlubny Igor. Fractional differential equations. Volume 198 of Mathematics in Science and Engineering. San Diego, CA:Academic Press Inc, 1999 [23] Stein Elias M. Singular integrals and differentiability properties of functions. Princeton, NJ:Princeton University Press, 1970 [24] Tessitore, Gianmario, Jerzy Zabczyk. Strict positivity for stochastic heat equations. Stochastic Process Appl, 1998, 77(1):83-98 [25] Walsh John B. An Introduction to Stochastic Partial Differential Equations//Ècole d'èté de probabilités de Saint-Flour, XIV-1984, 265-439. Lecture Notes in Math 1180. Berlin:Springer, 1986 |