[1] Bahouri H, Chemin J, Danchin R. Fourier Analysis and Nonlinear Partial Differential Equations. Springer, 2011 [2] Balan R M, Tudor C A. The stochastic heat equation with fractional-colored noise:existence of the solution. Latin Amer J Probab Math Stat, 2008, 4:57-87 [3] Chen X. Spatial asymptotics for the parabolic Anderson models with generalized time-space Gaussian noise. Ann Probab, 2016, 44(2):1535-1598 [4] Chen X. Parabolic Anderson model with rough or critical Gaussian noise. 2018, preprint, 43pp [5] Da Prato G, Zabczyk J. Stochastic equations in infinite dimensions//Encyclopedia of Mathematics and its Applications, 44. Cambridge:Cambridge University Press, 1992:xviii+454 pp [6] Dalang R. Extending Martingale Measure Stochastic Integral with Applications to Spatially Homogeneous S.P.D.E's. Electron J Probab, 1999, 4(6):29pp [7] Deya A. On a modeled rough heat equation. Probab Theory Related Fields, 2016, 166(1/2):1-65 [8] Foondun M, Khoshnevisan D. Intermittence and nonlinear parabolic stochastic partial differential equations. Electron J Probab, 2009, 14(21):548-568 [9] Garsia A M, Rodemich E, Rumsey H. A real variable lemma and the continuity of paths of some Gaussian processes. Indiana Univ Math J, 1970, 20:565-578 [10] Gradinaru M, Nourdin I, Russo F, Vallois P. m-order integrals and generalized Itô's formula:the case of a fractional Brownian motion with Hurst index. Ann Inst H Poincaré Probab Statist, 2005, 41(4):781-806 [11] Hairer M. Solving the KPZ equation. Ann of Math, 2011, 178(2):559-664 [12] Hairer, M. A theory of regularity structures. Invent Math, 2014, 198(2):269-504 [13] Hu Y, Huang J, Nualart D, Tindel S. Stochastic heat equations with general multiplicative Gaussian noises:Hölder continuity and intermittency. Electron J Probab, 2015, 20(55):50pp [14] Hu Y, Huang J, Lê K, Nualart D, Tindel S. Stochastic heat equation with rough dependence in space. Ann Probab, 2017, 45(6B):4561-4616 [15] Hu Y, Lu F, Nualart D. Feynman-Kac formula for the heat equation driven by fractional noise with Hurst parameter H < 1/2. Ann Probab, 2012, 40(3):1041-1068 [16] Hu Y, Nualart D. Stochastic heat equation driven by fractional noise and local time. Probab Theory Related Fields, 2009, 143(1/2):285-328 [17] Hu Y, Nualart D, Song J. Feynman-Kac formula for heat equation driven by fractional white noise. Ann Probab, 2011, 39(1):291-326 [18] Mourrat J, Weber H. Global well-posedness of the dynamic Φ4 model in the plane. Ann Probab, 2017, 45(4):2398-2476 [19] Nualart D. The Malliavin Calculus and Related Topics. Second Edition. Probability and its Applications. Springer-Verlag, 2006 [20] Peszat S, Zabczyk J. Stochastic evolution equations with a spatially homogeneous Wiener process. Stochastic Process Appl, 1997, 72(2):187-204 [21] Russo F, Vallois P. Forward, backward and symmetric stochastic integration. Probab Theory Related Fields, 1993, 97(3):403-421 [22] Russo F, Vallois P. Elements of stochastic calculus via regularization. Séminaire de Probabilités XL, 147- 185, Lecture Notes in Math, 1899. Springer, 2007 [23] Tudor C, Xiao Y. Sample paths of the solution to the fractional-colored stochastic heat equation. Stoch Dyn, 2017, (1):20pp |