[1] Alberts T, Khanin K, Quastel J. The continuum directed random polymer. J Stat Phys, 2014, 154(1/2):305-326 [2] Amir G, Corwin I, Quastel J. Probability distribution of the free energy of the continuum directed random polymer in 1+ 1 dimensions. Comm Pure Appl Math, 2011, 64(4):466-537 [3] Balan R, Chen L. Parabolic Anderson Model with space-time homogeneous Gaussian noise and rough initial condition. Journal of Theoretical Probability, 2018, 31:2216-2265 [4] Balan R, Jolis M, Quer-Sardanyons L. SPDEs with fractional noise in space with index H < 1/2. Electron J Probab, 2015, 20(54):36 pp [5] Balan R, Quer-Sardanyons L, Song J. Hölder continuity for the Parabolic Anderson Model with spacetime homogeneous Gaussian noise. Acta Mathematica Scientia, 2019, 39B(3):717-730. See also arXiv:1807.05420 [6] Bertini L, Cancrini N. The stochastic heat equation:Feynman- Kac formula and intermittence. J Statist Phys, 1995, 78(5/6):1377-1401 [7] Bezerra S, Tindel S, Viens F. Superdiffusivity for a Brownian polymer in a continuous Gaussian environment. Ann Probab, 2008, 36(5):1642-1675 [8] Biagini F, Hu Y, Øksendal B, Zhang T. Stochastic calculus for fractional Brownian motion and applications//Probability and its Applications (New York). London:Springer-Verlag London, Ltd, 2008 [9] Carmona R, Lacroix J. Spectral Theory of Random Schrödinger Operators//Probability and its Applications. Boston, MA:Birkhäuser Boston, Inc, 1990 [10] Carmona R A, Molchanov S A. Parabolic Anderson problem and intermittency. Mem Amer Math Soc, 1994, 108(518):viii+125 [11] Chen L, Dalang R C. Moments and growth indices for the nonlinear stochastic heat equation with rough initial conditions. Annals of Probability, 2015, 43:3006-3051 [12] Chen L, Dalang R C. Hölder-continuity for the nonlinear stochastic heat equation with rough initial conditions. Stoch Partial Differ Equ Anal Comput, 2014, 2(3):316-352 [13] Chen L, Hu G, Hu Y, Huang J. Space-time fractional diffusions in Gaussian noisy environment. Stochastics, 2017, 89(1):171-206 [14] Chen L, Hu Y, Kalbasi K, Nualart D. Intermittency for the stochastic heat equation driven by a rough time fractional Gaussian noise. Probab Theory Related Fields, 2018, 171(1/2):431-457 [15] Chen L, Hu Y, Nualart D. Two-point correlation function and Feynman-Kac formula for the stochastic heat equation. Potential Anal, 2017, 46(4):779-797 [16] Chen L, Hu Y, Nualart D. Regularity and strict positivity of densities for the nonlinear stochastic heat equation. Memoirs of American Mathematical Society, 2018(to appear). See also arXiv:1611.03909 [17] Chen L, Hu Y, Nualart D. Nonlinear stochastic time-fractional slow and fast diffusion equations on Rd. Revised for Stochastic Processes and Appl [18] Chen L, Huang J. Comparison principle for stochastic heat equation on Rd. Annals of Probability, 2018, to appear [19] Chen L, Kim K. Nonlinear stochastic heat equation driven by spatially colored noise:moments and intermittency. Acta Mathematica Scientia, 2019, 39B(3):645-668 [20] Chen X. Quenched asymptotics for Brownian motion in generalized Gaussian potential. Ann Probab, 2014, 42(2):576-622 [21] Chen X. Spatial asymptotics for the parabolic Anderson models with generalized time-space Gaussian noise. Ann Probab, 2016, 44(2):1535-1598 [22] Chen X. Moment asymptotics for parabolic Anderson equation with fractional time-space noise:in Skorokhod regime. Ann Inst Henri Poincar Probab Stat, 2017, 53(2):819-841 [23] Chen X, Hu Y, Nualart D, Tindel S. Spatial asymptotics for the parabolic Anderson model driven by a Gaussian rough noise. Electron J Probab, 2017, 22(65):38 pp [24] Chen X, Hu Y, Song J, Xing F. Exponential asymptotics for time-space Hamiltonians. Ann Inst Henri Poincar Probab Stat, 2015, 51(4):1529-1561 [25] Chen X, Phan T V. Free energy in a mean field of Brownian particles. Preprint [26] Chernoff P R. Note on product formulas for operator semigroups. J Funct Anal, 1968, 2:238-242 [27] Chernoff P R. Product Formulas, Nonlinear Semigroups, and Addition of Unbounded Operators//Memoirs of the American Mathematical Society, No. 140. Providence, RI:American Mathematical Society, 1974 [28] Conus D, Joseph M, Khoshnevisan D, Shiu S -Y. Initial measures for the stochastic heat equation. Ann Inst Henri Poincar Probab Stat, 2014, 50(1):136-153 [29] Dalang R. Extending Martingale Measure Stochastic Integral with Applications to Spatially Homogeneous S.P.D.E's. Electron J Probab, 1999, 4(6) [30] Duncan T E, Hu Y, Pasik-Duncan B. Stochastic calculus for fractional Brownian motion. I. Theory. SIAM J Control Optim, 2000, 38(2):582-612 [31] Gärtner J, Molchanov S A. Parabolic problems for the Anderson model. I. Intermittency and related topics. Comm Math Phys, 1990, 132(3):613-655 [32] Gärtner J, Molchanov S A. Parabolic problems for the Anderson model. Ⅱ. Second-order asymptotics and structure of high peaks. Probab Theory Related Fields, 1998, 111(1):17-55 [33] Hairer M. Solving the KPZ equation. Ann of Math, 2013, 178(2):559-664 [34] Hille E, Phillips R S. Functional analysis and semi-groups. Third printing of the revised edition of 1957//American Mathematical Society Colloquium Publications, Vol XXXI. Providence, RI:American Mathematical Society, 1974 [35] Hu Y. Integral transformations and anticipative calculus for fractional Brownian motions. Mem Amer Math Soc, 2005, 175(825) [36] Hu Y. Analysis on Gaussian space. Singapore:World Scientific, 2017 [37] Hu Y. Heat equation with fractional white noise potentials. Appl Math Optim, 2001, 43:221-243 [38] Hu Y. Chaos expansion of heat equations with white noise potentials. Potential Anal, 2002, 16(1):45-66 [39] Hu Y. A class of SPDE driven by fractional white noise Leipzig. Stochastic processes, physics and geometry:new interplays, Ⅱ. 1999:317-325; CMS Conf Proc, 29. Providence, RI:Amer Math Soc, 2000 [40] Hu Y. Schrödinger equation with Gaussian potential (To appear) [41] Hu Y, Huang J, Nualart D, Tindel S. Stochastic heat equations with general multiplicative Gaussian noises:Hölder continuity and intermittency. Electron J Probab, 2015, 20(55) [42] Hu Y, Huang J, Le K, Nualart D, Tindel S. Stochastic heat equation with rough dependence in space. Ann Probab, 2017, 45B(6):4561-4616 [43] Hu Y, Huang J, Le K, Nualart D, Tindel S. Parabolic Anderson model with rough dependence in space (To appear in Abel Proceedings) [44] Hu Y, Lê K. A multiparameter Garsia-Rodemich-Rumsey inequality and some applications. Stochastic Process Appl, 2013, 123(9):3359-3377 [45] Hu Y, Lê K. Nonlinear Young integrals and differential systems in Hölder media. Trans Amer Math Soc, 2017, 369(3):1935-2002 [46] Hu Y, Lê K. Joint Hölder continuity of parabolic Anderson model. Acta Mathematics Scientia, 2019, 39B(3):764-780 [47] Hu Y, Liu Y, Tindel S. On the necessary and sufficient conditions to solve a heat equation with general Additive Gaussian noise. Acta Mathematics Scientia, 2019, 39B(3):669-690 [48] Hu Y, Lu F, Nualart D. Feynman-Kac formula for the heat equation driven by fractional noise with Hurst parameter H < 1/2. Ann Probab, 2012, 40(3):1041-1068 [49] Hu Y, Nualart D. Stochastic heat equation driven by fractional noise and local time. Probab Theory Related Fields, 2009, 143(1/2):285-228 [50] Hu Y, Nualart D, Song J. Feynman-Kac formula for heat equation driven by fractional white noise. Ann. Probab, 2011, 39(1):291-326 [51] Hu Y, Nualart D, Zhang T. Large deviations for stochastic heat equation with rough dependence in space. Bernoulli, 2018, 24(1):354-385 [52] Hu Y, Øksendal B, Zhang T. General fractional multiparameter white noise theory and stochastic partial differential equations. Comm Partial Differential Equations, 2004, 29(1/2):123 [53] Hu Y, Yan J A. Wick calculus for nonlinear Gaussian functionals. Acta Math Appl Sin Engl Ser, 2009, 25(3):399-414 [54] Ikeda N, Watanabe S. Stochastic differential equations and diffusion processes. Second edition. NorthHolland Mathematical Library, 24. Amsterdam:North-Holland Publishing Co; Tokyo:Kodansha, Ltd, 1989 [55] Johnson G W, Lapidus M L. The Feynman integral and Feynman's operational calculus. Oxford Mathematical Monographs. Oxford Science Publications. New York:The Clarendon Press, Oxford University Press, 2000 [56] Kato T. Trotter's product formula for an arbitrary pair of self-adjoint contraction semigroups//Gohberg I, Kac M. Topics in Functional Analysis. London:Academic Press, 1978 [57] Kilbas A A, Srivastava H M, Trujillo J J. Theory and applications of fractional differential equations. North-Holland Mathematics Studies, 204. Amsterdam:Elsevier Science BV, 2006 [58] Khoshnevisan D. Analysis of stochastic partial differential equations//CBMS Regional Conference Series in Mathematics, 119. Published for the Conference Board of the Mathematical Sciences, Washington, DC. Providence, RI:the American Mathematical Society, 2014:viii+116 pp [59] König W. The parabolic Anderson model. Random walk in random potential. Pathways in Mathematics. Birkhäuser/Springer,[Cham], 2016 [60] Memin J, Mishura Y, Valkeila E. Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion. Statist Probab Lett, 2001, 51:197-206 [61] Mueller C. Long-time existence for the heat equation with a noise term. Prob. Theory Rel Fields, 1991, 9:505-517 [62] Nualart D. The Malliavin calculus and related topics. Second edition. Probability and its Applications (New York). Berlin:Springer-Verlag, 2006 [63] Peszat S, Zabczyk J. Stochastic evolution equations with a spatially homogeneous Wiener process. Stochastic Process Appl, 1997, 72(2):187-204 [64] Rhandi A. Dyson-Phillips expansion and unbounded perturbations of linear C0-semigroups. J Comput Appl Math, 1992, 44:339-349 [65] Trotter H F. On the product of semi-groups of operators. Proc Amer Math Soc, 1959, 10:545-551 [66] Vuillermot P -A. A generalization of Chernoff's product formula for time-dependent operators. J Funct Anal, 2010, 259(11):2923-2938 [67] Vuillermot P -A, Wreszinski W F, Zagrebnov V A. A general Trotter-Kato formula for a class of evolution operators. J Funct Anal, 2009, 257:2246-2290 [68] Walsh B. An introduction to Stochastic Partial Differential Equations//Lecture Notes in Mathematics 1180. Springer-Verlag, 1986:265-439 [69] Yosida K. Functional analysis. Reprint of the sixth edition (1980)//Classics in Mathematics. Berlin:Springer-Verlag, 1995 |