[1] Balan R, Quer-Sardanyons L, Song J. Hölder continuity for the Parabolic Anderson Model with spacetime homogeneous Gaussian noise. Acta Mathematica Scientia, 2019, 39B(3):717-730. See also arXiv preprint. 1807.05420 [2] Chen L, Dalang R C. Hölder-continuity for the nonlinear stochastic heat equation with rough initial conditions. Stoch Partial Differ Equ Anal Comput, 2014, 2(3):316-352 [3] Chen L, Kalbasi K, Hu Y, Nualart D. Intermittency for the stochastic heat equation driven by timefractional Gaussian noise with H ∈ (0, 1/2). Prob Theory and Related Fields, 2018, 171(1/2):431-457 [4] Hu Y. Analysis on Gaussian space. Singapore:World Scientific, 2017 [5] Hu Y, Le K. A multiparameter Garsia-Rodemich-Rumsey inequality and some applications. Stochastic Process Appl, 2013, 123(9):3359-3377 [6] Hu Y, Nualart D. Stochastic heat equation driven by fractional noise and local time. Probab Theory Related Fields, 2009, 143(1/2):285-328 [7] Hu Y, Huang J, Lê K, Nualart D, Tindel S. Stochastic heat equation with rough dependence in space. Ann Probab, 2017, 45(6B):4561-4616 [8] Hu Y, Huang J, Lê K, Nualart D, Tindel S. Parabolic Anderson model with rough dependence in space. Computation and Combinatorics in Dynamics, Stochastics and Control, 2018:477-498 [9] Hu Y, Huang J, Nualart D, Tindel S. Stochastic heat equations with general multiplicative Gaussian noises:Hölder continuity and intermittency. Electron J Probab, 2015, 20(55):50 pp [10] Hu Y, Nualart D, Song J. A nonlinear stochastic heat equation:Hölder continuity and smoothness of the density of the solution. Stochastic Process Appl, 2013, 123(3):1083-1103 [11] Hu Y, Nualart D, Song J. Feynman-Kac formula for heat equation driven by fractional white noise. Ann Probab, 2011, 30:291-326 [12] Memin J, Mishura Y, Valkeila E. Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion. Statist Probab Lett, 2001, 51:197-206 [13] Nualart D. The Malliavin calculus and related topics. Second Edition. Probability and its Applications (New York). Berlin:Springer-Verlag, 2006. xiv+382 pp [14] Sanz-Solé M, Sarrà M. Hölder continuity for the stochastic heat equation with spatially correlated noise//Seminar on Stochastic Analysis, Random Fields and Applications, Ⅲ (Ascona, 1999), 259-268, Progr Probab, 52. Basel:Birkhäuser, 2002 |