[1] Aougab T, Dong S C, Strichartz R S. Laplacians on a family of quadratic Julia sets Ⅱ. Commun Pure Appl Anal, 2013, 12:1-58 [2] Douady A, Hubbard J H. Étude Dynamique des Polynômes Complexes. Partie I. Vol. 84 of Publications Mathématiques d'Orsay[Mathematical Publications of Orsay], Université de Paris-Sud, Département de Mathématiques, Orsay, 1984 [3] Falconer K. Fractal Geometry. 2nd ed. Hoboken, NJ:John Wiley & Sons, Inc, 2003 [4] Flock T C, Strichartz R S. Laplacians on a family of quadratic Julia sets I. Trans Amer Math Soc, 2012, 364:3915-3965 [5] Fukushima M, Oshima Y, Takeda M. Dirichlet forms and symmetric Markov processes. Vol. 19 of de Gruyter Studies in Mathematics. extended ed. Berlin:Walter de Gruyter & Co, 2011 [6] Kigami J. Analysis on Fractals. Vol. 143 of Cambridge Tracts in Mathematics. Cambridge:Cambridge University Press, 2001 [7] Kigami J. Resistance forms, quasisymmetric maps and heat kernel estimates. Mem Amer Math Soc, 2012, 216:vi+132 [8] Kumagai T. Heat kernel estimates and parabolic Harnack inequalities on graphs and resistance forms. Publ Res Inst Math Sci, 2004, 40:793-818 [9] Milnor J. Dynamics in One Complex Variable. Vol 160 of Annals of Mathematics Studies. 3rd ed. Princeton, NJ:Princeton University Press, 2006 [10] Milnor J W. Periodic Orbits, Externals Rays and the Mandelbrot Set:An Expository Account. ArXiv Mathematics e-prints, 1999 [11] Rogers L G, Teplyaev A. Laplacians on the basilica Julia sets. Commun Pure Appl Anal, 2010, 9:211-231 [12] Spicer C, Strichartz R S, Totari E. Laplacians on Julia sets Ⅲ:cubic Julia sets and formal matings//Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics. I. Fractals in Pure Mathematics. Vol. 600 of Contemp Math. Providence, RI:Amer Math Soc, 2013:327-348 [13] Teplyaev A. Harmonic coordinates on fractals with finitely ramified cell structure. Canad J Math, 2008, 60:457-480 |