[1] Buckley S M. Estimates for operator norms on weighted spaces and reverse Jensen inequalities. Trans Amer Math Soc, 1993, 340:253-272 [2] Cohen J. A sharp estimate for a multilinear singular integral on Rn. Indiana Univ Math J, 1981, 30:693-702 [3] Damián W, Hormozi M, Li K. New bounds for bilinear Calderón-Zygmund operators and applications. arxiv:1512.02400 [4] Grafakos L. Modern Fourier Analysis. GTM 250. 2nd Edition. New York:Springer, 2008 [5] Hofmann S. On certain non-standard Calderón-Zygmund operators. Studia Math, 1994, 109:105-131 [6] Hu G. Weighted vector-valued estimates for a non-standard Calderón-Zygmund operator. Nonlinear Anal, 2017, 165:143-162 [7] Hu G, Li D. A Cotlar type inequality for the multilinear singular integral operators and its applications. J Math Anal Appl, 2004, 290:639-653 [8] Hu G, Yang D. Sharp function estimates and weighted norm inequalities for multilinear singular integral operators. Bull London Math Soc, 2003, 35:759-769 [9] Hytönen T. The sharp weighted bound for general Calderón-Zygmund operators. Ann Math, 2012, 175:1473-1506 [10] Hytönen T, Lacey M, Pérez C. Sharp weighted bounds for the q-variation of singular integrals. Bull London Math Soc, 2013, 45:529-540 [11] Hytönen T, Pérez C. Sharp weighted bounds involving A∞. Anal PDE, 2013, 6:777-818 [12] Hytönen T, Pérez C. The L(log L)ε endpoint estimate for maximal singular integral operators. J Math Anal Appl, 2015, 428:605-626 [13] Lacey M, Li K. On Ap- A∞ type estimates for square functions. Math Z, 2016, 284:1211-1222 [14] Lerner A K. On pointwise estimate involving sparse operator. New York J Math, 2016, 22:341-349 [15] Lerner A K, Obmrosi S, Rivera-Rios I. On pointwise and weighted estimates for commutators of CalderónZygmund operators. Adv Math, 2017, 319:153-181 [16] Lerner A K, Obmrosi S, Rivera-Rios I. Commutators of singular integral operators revisied. arXiv:1709.04724 [17] Li K. Sparse domination theorem for mltilinear singular integral operators with Lr-Hörmander condition. Michigan Math J, 2018, 67:253-265 [18] Li K, Moen K, Sun W. The sharp weighted bound for multilinear maximal functions and Calderón-Zygmund operators. J Four Anal Appl, 2014, 20:751-765 [19] Petermichl S. The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical A p characteristic. Amer J Math, 2007, 129:1355-1375 [20] Petermichl S. The sharp weighted bound for the Riesz transforms. Proc Amer Math Soc, 2008, 136:1237- 1249 [21] Rao M, Ren Z. Theory of Orlicz spaces//Monographs and Textbooks in Pure and Applied Mathematics, 146. New York:Marcel Dekker Inc, 1991 [22] Wilson M J. Weighted inequalities for the dyadic square function without dyadic A∞. Duke Math J, 1987, 55:19-50 |