[1] Alexandrov S, Vassilevich D. Heat kernel for nonminimal operators on a Kahler manifold. J Math Phys, 1996, 37(11): 5715--5718
[2] Berline N, Getzler E, Vergne M. Heat kernels and Dirac operators. Corrected reprint of the 1992 original. Grundlehren Text Editions. Berlin: Springer-Verlag, 2004
[3] Donnelly H. Heat equation asymptotics with torsion. Indiana Univ Math J, 1985, 34(1): 105--113
[4] Donnelly H. Spectrum and the fixed point sets of isometries I. Math Ann, 1976, 224(2): 161--170
[5] Dryden E, Gordon C, Greenwald S, Webb D. Asymptotic expansion of the heat kernel for orbifolds. Michigan Math J, 2008, 56(1): 205--238
[6] Lafferty J D, Yu Y L, Zhang W P. A direct geometric proof of Lefschetz fixed point formulas. Trans Amer Math Soc, 1992, 329: 571--583
[7] Gilkey P. Heat content asymptotics of nonminimal operators. Topol Methods Nonlinear Anal, 1994, 3(1): 69--80
[8] Gilkey P. Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem. Second ed. Boca Raton, FL: CRC Press, 1995
[9] Gilkey P, Branson T, Fulling S. Heat equation asymptotics of ``nonminimal'' operators on differential forms. J Math Phys, 1991, 32(8): 2089--2091
[10] Puta M, Cret F. A generalization of the Gilkey-Branson-Fulling formula//Proceedings of the Workshop on Global Analysis, Differential Geometry, Lie Algebras (Thessaloniki, 1997). BSG Proc, 5. Bucharest: Geom Balkan Press, 2001: 79--82
[11] Yu Y. Trigonometry II. Acta Math Sinica, New Series, 1990, 6(1): 80--86
[12] Zhu Fuliu. On the heat kernel of the Riemannian symmetric space SU(6)/SP(3). Acta Math Sci, 1995, 15(3): 310--325 |