[1] Bergh J, L\"{o}fstr\"{o}m J. Interpolation Spaces. Berlin, Heidelberg, New York: Springer, 1976
[2] Danchin R. Global existence in critical spaces for compressible Navier-Stokes equations. Invent Math, 2001, 141: 579--614
[3] Danchin R. Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch Pational Mech Anal, 2002, 160: 1--39
[4] Deckelnick K. Decay estimates for the compressible Navier-Stokes equations in unbounded domains.
Math Z, 1992, 209: 115--130
[5] Duan R J, Ukai S, Yang T, Zhao H -J. Optimal convergence rates for the compressible Navier-Stokes
equations with potential forces. Math Models Meth Appl Sci, 2007, 17(5): 737--758
[6] Hoff D, Zumbrun K. Multidimensional diffusion waves for the Navier-Stokes equations of compressible
flow. Indiana Univ Math J, 1995, 44: 604--676
[7] Hoff D, Zumbrun K. Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves. Z Angew Math Phys, 1997, 48: 597--614
[8] Kobayashi T, Shibata Y. Decay estimates of solutions for the equations of motion of compressible
viscous and heat-conductive gases in an exterior domain in R3. Commun Math Phys, 1999, 200: 621--659
[9] Liu T -P, Wang W -K. The pointwise estimates of diffusion waves for the Navier-Stokes equations in odd
multi-dimensions. Commun Math Phys, 1998, 196: 145--173
[10] Liu X H, Zhu G J. Decay rates and convergence of solutions to system of one-dimensional viscoelastic model with damping. Acta Math Sci, 2004, 24B(3): 469--484
[11] Matsumura A, Nishida T. The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc Japan Acad Sec, 1979, 55A: 337--342
[12] Matsumura A, Nishida T. The initial value problems for the equations of motion of viscous and
heat-conductive gases. J Math Kyoto Univ, 1980, 20: 67--104
[13] Matsumura A, Nishida T. Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Comm Math Phys, 1983, 89(4): 445--464
[14] Ponce G. Global existence of small solutions to a class of nonlinear evolution equations. Nonlinear Anal, 1985, 9: 339--418
[15] Qian J -Z, Yin H. On the stationary solutions of the full compressible Navier-Stokes equations and its stability with respect to initial disturbance. J Differ Equ, 2007, 237: 225--256
[16] Shibata Y, Tanaka K. On the steady flow of compressible viscous fluid and its stability with respect to initial disturbance. J Math Soc Japan, 2003, 55: 797--826
[17] Shibata Y, Tanaka K. Rate of convergence of non-stationary flow to the steady flow of compressible viscous fluid. Comput Math Appl, 2007, 53: 605--623
[18] Ukai S, Yang T, Zhao H -J. Convergence rate for the compressible Navier-Stokes equation with external force. J Hyperbolic Differ Equ, 2006, 3(3): 561--574
[19] Wang W -K. Large time behavior of solutions for general Navier-Stokes systems in multi-dimension. Wuhan Univ J Nat Sci, 1997, 2: 385--393
|