数学物理学报(英文版) ›› 2009, Vol. 29 ›› Issue (5): 1341-1350.doi: 10.1016/S0252-9602(09)60107-7
杨占英, 杨奇祥
YANG Zhan-YIng, YANG Qi-Xiang
摘要:
For convolution-type Calderón-Zygmund operators, by the boundedness on Besov spaces and Hardy spaces, applying interpolation theory and duality, it is known that Hörmander condition can ensure the boundedness on
Triebel-Lizorkin spaces Fp0,q(1< p, q < ∞) and on a party of endpoint spaces F10,q(1 ≤ q ≤ 2), but this idea is invalid for endpoint Triebel-Lizorkin spaces F10,q(2 < q ∞). In this article, the authors apply wavelets and interpolation theory to establish the boundedness on F10,q(2 < q ≤ ∞) under an integrable condition which
approaches Hörmander condition infinitely.
中图分类号: