[1] Gerebeau J F, Bris C L, Lelievre T. Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Oxford: Oxford University Press, 2006
[2] Li Ta-tsien, Qiu Tiehu. Physics and Partial Differential Equations, Vol I. 2nd ed. Beijing: Higher Educa-tion Press, 2005
[3] Moreau R. Magnetohydrodynamics. Dordredht: Kluwer Academic Publishers, 1990
[4] Chen G Q, Wang D. Global solutions of nonlinear magnetohydrodynamics with large initial data. J Differential Equations, 2002, 182: 344–376
[5] Chen G Q,Wang D. Existence and continuous dependence of large solutions for the magnetohydrodynamics
equations. Z Angew Math Phys, 2003, 54: 608–632
[6] Hoff D, Tsyganov E. Uniqueness and continuous dependence of weak solutions in compressible magneto-
hydrodynamics. Z Angew Math Phys, 2005, 56: 215–254
[7] Kawashima S, Okada M. Smooth global solutions for the one-dimensional equations in magnetohydrody-namics. Proc Japan Acad Ser A, Math Sci, 1982, 58: 384–387
[8] Ducomet B, Feireisl E. The equations of Magnetohydrodynamics: on the interaction between matter and radiation in the evolution of gaseous stars. Commun Math Phys, 2006, 266: 595–629
[9] Fan J, Yu W. Global variational solutions to the compressible magnetohydrodynamic equations. Nonlinear Analysis: Theory, Methods and Applications, 2008, 69(10): 3637–3660
[10] Hu X, Wang D. Global solutions to the three-dimensional full compressible magnetohydrodynamic flows. Comm Math Phys, 2008,283: 253–284
[11] Tan Z, Wang Y J. Global existence and large-time behavior of weak solutions to the compressible magne-
tohydrodynamic equations with coulomb force. Nonlinear Analysis: Theory, Methods and Applications, 2009, 71: 5866–5884
[12] Mohamed A-A, Jiang F, Tan Z. Decay estimates for isentropic compressible magnetohydrodynamic equa-tions in bounded damain. Acta Mthematica Scientia, 2012, 32(6): 2211–2220
[13] Gao Z S, Tan Z, Wu G C. Energy Dissipation for Weak Solutions of Incompressible MHD Eqations, Acta
Mathematica Scientia 2013, 33B(3): 865–871
[14] Feireisl E, Novotn´y A, Petleltov´a H. On the existence of globally defined weak solutions to the Navier-Stokes equations of isentropic compressible fluids. J Math Fluid Mech, 2001, 3: 358–392
[15] Lions P L. Mathematical Topics in Fluids Mechanics. Vol 2. Oxford Lecture Series in Mathematics and its Applications. New York: The Clarendon Press University Press, 1998
[16] Novotn´y A, Straˇskraba I. Introduction to the Mathematical Theory of Compressible Flow. New York: Oxford University Press, 2004
[17] Duan R, Ma H F. Global existence and convergence rates for the 3-D compressible Navier-Stokes equations
without heat conductivity. Indiana Univ Math J, 2008, 57(5): 2299–2319
[18] Kawashima S. Systems of a Hyperbolic-parabolic Composite Type, with Applications to the Equations of
Magnetohydrodynamics. Kyoto: Kyoto University, 1983
[19] Kobayashi T. Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in R3. J Differential Equations, 2002, 184: 587–619
[20] Kobayashi T, Shibata Y. Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in R3. Comm Math Phys, 1999, 200: 621–659
[21] Zuazua E. Time Asymptotics For Heat and Dissipative Wave Equations, June 2003, available at: http: //www.uam.es/enrique.zuazua
[22] Adams R. Sobolev Spaes. New York: Academic Press, 1985
[23] Deckelnick K. Decay estimates for the compressible Navier-Stokes equations in unbounded domains. Math Z, 1992, 209: 115–130
[24] Duan R, Ukai S, Yang T, Zhao H J. Optimal convergence rates for the compressible Navier-Stokes equations with potential forces. Math Models Methods Appl Sci, 2007, 17(5): 737–758
[25] Duan R, Liu X, Ukai S, Yang T. Optimal Lp − Lq convergence rates for the compressible Navier-Stokes equations with potential force. J Differential Equations, 2007, 238(1): 220–233 |