[1] Degond P. Mathematical modelling of microelectronics semiconductor devices//Some Current Topics on Nonlinear Conservation Laws. AMS/IP Stud Adv Math, 15. Providence, RI: Amer Math Soc, 2000: 77--110
[2] Degond P, Jin S, Liu J. Mach-number uniform asymptotic-preserving gauge schemes for compressible flows. Bull Inst Math Acad Sin (N S), 2007, 2(4): 851--892
[3] Donatelli D. Local and global existence for the coupled Navier-Stokes-Poisson problem. Quart Appl Math, 2003, 61: 345--361
[4] Donatelli D, Marcati P. A quasineutral type limit for the Navier-Stokes-Poisson system with large data. Nonlinearity, 2008, 21(1): 135--148
[5] Duan R -J, Liu H, Ukai S, Yang T. Optimal Lp-Lq convergence rates for the compressible Navier-Stokes equations with potential force. J Differ Equ, 2007, 238(5): 737--758
[6] Ducomet B. Some stability results for reactive Navier-Stokes-Poisson system, Evolution equations: existence, regularity and singularities (Warsaw, 1998), 83-118, Banach Center Pibl., 52, Polish Acad. Sci., Warsaw, 2000
[6] Ducomet B, Feireisl E, Petzeltova H, Skraba I S. Global in time weak solution for compressible barotropic self-gravitating fluids. Discrete Continous Dynamical System, 2004, 11(1): 113--130
[7] Ducomet B, Zlotnik A. Stabilization and stability for the spherically symmetric Navier-Stokes-Poisson system. Appl Math Lett, 2005, 18(10): 1190--1198
[8] Hao C, Li H. Global Existence for compressible Navier-Stokes-Poisson equations in three and higher dimensions. J Differ Equ, 2009, 246: 4791--4812
[9] Hoff D, Zumbrun K. Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ Math J, 1995, 44: 603--676
[10] Ju Q, Li F, Li H -L. The quasineutral limit of Navier-Stokes-Poisson system with heat conductivity and general initial data. J Differ Equ, 2009, 247: 203--224
[11] Kobayashi T, Suzuki T. Weak solutions to the Navier-Stokes-Poisson equations. 2004, preprint.
[12] Li H -L, Matsumura A, Zhang G. Optimal decay rate of the compressible Navier-Stokes-Poisson system in R3. Archive for Rational Mechanics and Analysis, in press.
[13] Liu T -P, Wang W -K. The pointwise estimates of diffusion waves for the Navier-Stokes equations in odd multi-dimensions. Comm Math Phys, 1998, 196: 145--173
[14] Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20: 67--104
[15] Ponce G. Global existence of small solution to a class of nonlinear evolution equations. Nonlinear Anal, 1985, 9: 339--418
[16] Wang S, Jiang S. The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations. Comm Partial Differ Equ, 2006, 31: 571--591
[17] Zhang Y, Tan Z. On the existence of solutions to the Navier-Stokes-Poisoon equations of a two-dimensional compressible flow. Math Mathods Appl Sci, 2007, 30(3): 305--329
|