[1] Bear M, Connors B, Paradiso M. Neuroscience: Exploring the Brain. 2nd ed. Baltimore: Lippincott Williams Wilkins, 2001
[2] Blum J, Reed M. A model for fast axonal transport. Cell Motility Cytoskeleton, 1985, 5(6): 507-527
[3] Blum J, Reed M. The transport of organelles in axons. Math Biosci, 1988, 90: 233-245
[4] Carr D D. Global exsistence of solutions to reaxtion-hyperbolic systems in one space dimension. SIAM J Math Anal, 1995, 26(2): 399-414
[5] Friedman A, Craciun G. Approximate traveling waves in linear reaction-hyperbolic equations. SIAM J Math Anal, 2006, 38(3): 741-758
[6] Friedman A, Hu B. Uniform convergence for approximate traveling waves in linear reaction-hyperbolic systems. Indiana Univ Math J, 2007, 56(5): 2133-2158
[7] Hanouzet B, Natalini R. Weakly coupled systems of quasilinear hyperbolic equations. Differential Integral Equations, 1996, 9(6): 1279-1292
[8] Kandel E, et al. Principles of Neural Sciences. 4th ed. McGraw Hill, 2000
[9] Kruzkov S N. First order quasilinear euations with several space variables. Math USSRSb, 1970, 10(2): 217-243
[10] Kurganov A, Tadmor E. Stiff systems of hyperbolic conservation laws: convergence and error estimate. SIAM J Math Anal, 1997, 28(6): 1446-1456
[11] Kuznetsov N N. The accuracy of certain approximate methods for computation of weak solutions of a first order quasilinear equation. USSR Comput Math Phys, 1976, 16: 105-119
[12] Liu T -P. Hyperbolic conservation laws with relaxation. Comm Math Phys, 1987, 108(1): 153-175
[13] Reed M, Blum J. Theoretical Analysis of radioactivity profiles during fast axonal transport: Effects of deposition and turnover. Cell Motility Cytoskeleton, 1986, 6(6): 620-627
[14] Reed M, Blum J. A model for slow axonal transport and its application to neurofilamentous neuropathies. Cell Motility Cytoskeleton, 1989, 12(1): 53-65
[15] Reed M, Blum J. Mathematical questions in axonal transport//Lectures on Mathematics in the Life Sci- ences, 24. Amer Math Soc, 1994
[16] Reed M, Venakides S, Blum J. Approximate traveling waves in linear reaction-hyperbolic equations. SIAM J Appl Math, 1990, 50(1): 167-180
[17] Schroll H J, Tveito A, Winther R. An L1 error bound for a semi-implicit difference scheme apllied to a stiff system of conservation laws. SIAM J Math Anal, 1997, 34(3): 1152-1166
[18] Smoller J. Shock Waves and Rarefaction-Diffusion Equations. New York: Springer-Verlag, 1983
[19] Tang T, Teng Z H. The sharpness of Kuznetsov's O(1)(√Δx) L1-error estimate for monotone diffference schemes. Math Comp, 1995, 64: 581-589
[20] A.Tveito and R.Winther, On the rate of convergence to equilibrium for a stiff system of conservation laws with s relaxtion term. SIAM J Math Anal, 1997, 28(1): 136-161
[21] Whitham G. Linear and Nonlinear Waves. New York: Wiley-Interscience, 1974
[22] Yan H, Yong W -A. Weak entropy solutions of nonlinear reaction-hyperbolic systems for axonal transport. Math Mod Meth Appl Sci, 2011, 28(10): 2135-2154" |