[1] Arnold A, Markowich P, Toscani G, Unterreiter A. On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Comm Part Diff Equ, 2001, 26(1/2): 43–100
[2] Bostan M, Goudon Th. High-electric-field limit for the Vlasov-Maxwell-Fokker-Planck system. Ann Inst H Poincare Anal Non Lineaire, 2008, 25(6): 1221–1251
[3] Bouchut F. Smoothing effect for the nonlinear Vlasov-Poisson-Fokker-Planck system. J Differ Equ, 1995, 122(2): 225–238
[4] Carrillo J -A, Laurencot P, Rosado J. Fermi-Dirac-Fokker-Planck equation: Well-posedness and long-time asymptotics. J Differ Equ, 2009, 247(8): 2209–2234
[5] Carrillo J -A, Rosado J, Salvarani F. 1D nonlinear Fokker-Planck equation for Fermions and Bosons. Appl Math Lett, 1995, 18(10): 825–839
[6] Degond P. Global existence of smooth solutions for the Vlasov-Fokker-Planck equations in 1 and 2 space dimensions. Ann Scient Ecole Normale Sup, 1986, 19: 519–542
[7] Desvillettes L, Villani C. On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation. Comm Pure Appl Math, 2001, 54: 1–42[8] DiPerna R, Lions P -L. Global weak solutions of Vlasov-Maxwell systems. Comm Pure Appl Math, 1989, 42(6): 729–757
[9] Duan R -J, Ukai S, Yang T, Zhao H -J. Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications. Comm Math Phys, 2008, 277: 189–236
[10] DiPerna R, Lions P -L. Global weak solutions of kinetic equations. Rend Sem Mat Univ Politec Torino,1988, 46(3): 259–288
[11] Escobedo M, Mischler S, Valle M A. Entropy maximisation problem for quantum and relativistic particles.Bull Soc Math France, 2005, 133(1): 87–120
[12] Esposito R, Guo Y, Marra R. Stability of the front under a Vlasov-Fokker-Planck dynamics. Arch Ration Mech Anal, 2010, 195(1): 75–116
[13] Frank T D. Classical Langevin equations for the free electron gas and blackbody radiation. J Phys A, 2004, 37(11): 3561–3567
[14] Hsiao L, Li F -C, Wang S. Convergence of the Vlasov-Poisson-Fokker-Planck system to the incompressible Euler equations. Sciences in China, Series A Mathematics, 2006, 49(2): 225–266
[15] Hsiao L, Li F -C, Wang S. The combined quasineutral and inviscid limit of Vlasov-Maxwell-Fokker-Planck system. Acta Mathematica Sinica, Chinese Series, 2009, 52(4): 1–14
[16] Kaniadakis G. Generalized Boltzmann equation describing the dynamics of bosons and fermions. Phys Lett A, 1995, 203: 229–234
[17] Kaniadakis G. H-theorem and generalized entropies within the framework of nonlinear kinetics. Phys LettA, 2001, 288: 283–291
[18] Kaniadakis G, Quarati P. Kinetic equation for classical particles obeying an exclusion priciple. Phys RevE, 1993, 48: 4263–4270
[19] Kawashima S. The Boltzmann equation and thirteen moments. Japan J Appl Math, 1990, 7: 301–320
[20] Li H -L, Matsumura A. Behaviour of the Fokker-Planck-Boltzmann equation near a Maxwellian. ArchRation Mech Anal, 2008, 189(1): 1–44
[21] Liu S -Q, Ma X, Yu H -J. Optimal time decay of the quantum Landau equation in the whole space. J Differ Equ, 2012, 252: 5414–5452
[22] Liu T -P, Yang T, Yu S -H. Energy method for the Boltzmann equation. Physica D, 2004, 188(3/4): 178–192
[23] Lu X -G. A modified Boltzmann equation for Bose-Einstein particles: isotropic solutions and long-time behavior. J Stat Phys, 2000, 98(5/6): 1335–1394
[24] Mohout C, Neumann L. Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus. Nonliearity, 2006, 19: 969–998
[25] Neumann L, Sparber C. Stability of steady states in kinetic Fokker-Planck equations for Bosons and Fermions. Comm Math Sc, 2007, 5(4): 765–777
[26] Rossani A, Kaniadakis G. A generalized quasi-classical Boltzmann equation. Physica A, 2000, 277: 349–358
[27] Sopik J, Sire C, Chavanis P H. Self-gravitating Brownian systems and bacterial populations with two ormore types of particles. Phys Rev E, 2005, 72: 26105–26144
[28] Sopik J, Sire C, Chavanis P H. Dynamics of the Bose-Einstein condensation: analogy with the collapse dynamics of a classical self-gravitating Brownian gas. Phys Rev E, 2006, 74: 11112–11127
[29] Villani C. Hypocoercivity. Memoirs Amer Math Soc, 2009, 202(950)
[30] Yang T, Yu H -J. Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space.J Differ Equ, 2010, 248: 1518–1560
[31] Yang T, Yu H -J. Global classical solutions for the Vlasov-Maxwell-Fokker-Planck system. SIAM J MathAnal, 2010, 42(1): 459–488
[32] Yang T, Yu H J. Optinal converagence rates of Landau equation with external forcing in the whole space.Acta Math Sci, 2009, 29B(4): 1035–1062
[33] Yang T, Zhao H -J. A new energy method for the Boltzmann equation. J Math Phys, 2006, 47(5): 053301 |