[1] Degond P, Jin S, Liu J. Mach-number uniform asymptotic-preserving gauge schemes for compressible flows. Bull Inst Math Acad Sin (N S), 2007, 2(4): 851–892
[2] Donatelli D. Local and global existence for the coupled Navier-Stokes-Poisson problem. Quart Appl Math, 2003, 61: 345–361
[3] Donatelli D, Marcati P. A quasineutral type limit for the Navier-Stokes-Poisson system with large data. Nonlinearity, 2008, 21(1): 135–148
[4] Duan R-J, Liu H, Ukai S, Yang T. Optimal Lp − Lq convergence rates for the compressible Navier-Stokes equations with potential force. J Diff Eqns, 2007, 238(5): 220–233
[5] Ducomet B, Feireisl E, Petzeltova H, Skraba I S. Global in time weak solution for compressible barotropic self-gravitating fluids. Discrete Continues Dynamical System, 2004, 11(1): 113–130
[6] Ducomet B, Zlotnik A. Stabilization and stability for the spherically symmetric Navier-Stokes-Poisson system. Appl Math Lett, 2005, 18(10): 1190–1198
[7] Hao C, Li H-L. Global Existence for compressible Navier-Stokes-Poisson equations in three and higher dimensions. J Diff Eqns, 2009, 246: 4791–4812
[8] Hoff D, Zumbrun K. Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ Math J, 1995, 44: 603–676
[9] Hoff D, Zumbrun K, Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves. Z Angew Math Phys, 1997, 48: 597–614
[10] Ju Q, Li F, Li H-L. The quasineutral limit of Navier-Stokes-Poisson system with heat conductivity and general initial data. J Diff Eqns, 2009, 247: 203–224
[11] Kobayashi T, Suzuki T. Weak solutions to the Navier-Stokes-Poisson equations. 2004, preprint
[12] Li H-L, Matsumura A, Zhang G. Optimal decay rate of the compressible Navier-Stokes-Poisson system in R3. Arch Ration Mech Anal, 2010, 196: 681–713
[13] Li H-L, Yang T, Zou C. Time asymptotic behavior of the bipolar Navier-Stokes-Poisson system. Acta Math Sci, 2009, 29B: 1721–1736
[14] Li H-L, Zhang T. Large time behavior of isentropic compressible Navier-Stokes system in R3. preprint
[15] Liu T-P, Wang W-K. The pointwise estimates of diffusion waves for the Navier-Stokes equations in odd multi-dimensions. Comm Math Phys, 1998, 196: 145–173
[16] Markowich P A, Ringhofer C A, Schmeiser C. Semiconductor Equations. New York: Springer-Verlag, 1990
[17] Matsumura A, Nishida T. The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc Japan Acad, 1979, 55(A), 337–342
[18] Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20: 67–104
[19] Ponce G. Global existence of small solution to a class of nonlinear evolution equations. Nonlinear Anal, 1985, 9: 339–418
[20] Wang S, Jiang S. The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equa-tions. Comm Partial Diff Eqns, 2006, 31: 571–591
[21] Zhang G, Li H-L, Zhu C. Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in R3. J Diff Eqns, 2010, 25(2): 866–891
[22] Zhang Y, Tan Z. On the existence of solutions to the Navier-Stokes-Poisoon equations of a two-dimensional compressible flow. Math Methods Appl Sci, 2007, 30(3): 305–329 |