[1] Alencar H, Do Carmo M. Hypersurfaces with constant mean curvature in spheres. Proc Amer Math Soc, 1994, 120: 1223--1229
[2] Aubin T. Some nonlinear problems in Riemannian geometry. Springer Monographs in Mathematics. Berlin Heindelberg: Springer-Verlag, 1998
[3] Barbosa N et al. Hypersurfaces of the Euclidean sphere with nonnegative Ricci curvature. Arch Math, 2003, 81: 335--341
[4] Do Carmo M, Dacjzer M, Mercuri F. Compact conformally flat hypersurfaces. Tran Amer Math, 1985, 288: 189--203
[5] Cheng Q M, Ishikava S. A characterization of the Clifford torus. Proc Amer Math Soc, 1999, 127: 819--828
[6] Cheng Q M. Compact hypersurfaces in a unit sphere with infinite fundamental group. Pacific J Math, 2003, 212: 49--56
[7] Chern S S, Do Carmo M, Kobayashi S. Minimal submanifolds of a sphere with second fundamental form of constant length. Funct analysis and related fields. Berlin: Springer-Verlag, 1970: 59--75
[8] Hasanis T, Vlachos T. A pinching theorem for minimal hypersurfaces in a sphere. Arch Math, 2000, 75: 189--203
[9] Lawson H B. Local rigidity theorems for minimal hypersurfaces. Ann Math, 1969, 89: 179--185
[10] Li H Z. Hypersurfaces with constant scalar curvatur in space forms. Math Ann, 1996, 305: 665--672
[11] Peng C K, Terng C L. Mimimal hypersurfaces of spheres with constant scalar curvature. Ann Math Stud, 1983, 103: 177--198
[12] Simons J. Minimal varieties in Riemannian manifolds. Ann Math, 1968, 88: 62--105
[13] Wang Q L, Xia C Y. Rigidity theorems for closed hypersurfaces in a unit sphere. J Geom Phys, 2005, 55: 227--240
[14] Yang H C, Cheng Q M. Chern's conjecture on minimal hypersurfaces. Math Z, 1998, 227: 377--390
[15] Zhang Y T, Xu S L. The rigidity of Clifford torus Sm(√m/n) ×Sn-m(√(n-m)/n). Acta Mathematica Scientia, 2008, 28A(1): 128--132 |