[1] Aït Sahalia Y.Maximum likelihood estimation of discretely sampled diffusions: a closed form approximation approach. Econometrica, 2002, 70: 223-262 [2] Aït-Sahalia Y, Jacod J.Estimating the degree of activity of jumps in high frequency financial data. Annals of Statistics, 2009, 37: 2202-2244 [3] Aït-Sahalia Y, Jacod J.Is Brownian motion necessary to model high frequency data? Annals of Statistics 2010, 38: 3093-3128 [4] Aït-Sahalia Y, Jacod J.High-Frequency Financial Econometrics. Princeton: Princeton University Press 2014 [5] Aït-Sahalia Y, Mykland P, Zhang L.Ultra high frequency volatility estimation with dependent microstructure noise. Journal of Econometrics, 2011, 160: 160-175 [6] Bailleul I, Diehl J.The inverse problem for rough controlled differential equations. SIAM J Control Optim 2015, 53(5): 2762-2780 [7] Beskos A, Papaspiliopoulos O, Roberts G.Monte Carlo maximum likelihood estimation for discretely observed diffusion processes. Annals of Statistics, 2009, 37: 223-245 [8] Carmona R, Fouque J, Sun L. Mean field games and systemic risk. Commun Math Sci, 2015, 13(4): 911-933 [9] Chen Y, Gu X.An improved Berry-Esseen bound of least squares estimation for fractional Ornstein- Uhlenbeck processes. arXiv: 2210.00420 [10] Chen Y, Hu Y, Wang Z.Parameter estimation of complex fractional Ornstein-Uhlenbeck processes with fractional noise. ALEA Lat Am J Probab Math Stat, 2017, 14: 613-629 [11] Chen Y, Kuang N, Li Y.Berry-Esséeen bound for the parameter estimation of fractional Ornstein-Uhlenbeck processes. Stochastics and Dynamics, 2020, 20: Art 2050023 [12] Chen Y, Li Y.Berry-Esséeen bound for the parameter estimation of fractional Ornstein-Uhlenbeck processes with the hurst parameter H 2 (0; 1=2). Communications in Statistics-Theory and Methods,2021, 50(13): 13 2996-3013 [13] Chen Y, Zhou H.Parameter estimation for an Ornstein-Uhlenbeck process driven by a general gaussian noise. Acta Mathematica Scientia, 2021, 41B(2): 573-595 [14] Cheridito P, Kawaguchi H, Maejima M.Fractional Ornstein-Uhlenbeck processes. Electron J Probab, 2003 8: 1-14 [15] Comte F, Genon-Catalot V.Estimation for Léevy processes from high frequency data within a long time interval. Annals of Statistics, 2011, 39: 803-837 [16] Coutin L, Qian Z.Stochastic analysis, rough path analysis and fractional Brownian motions. Probab Theory Relat Fields, 2002, 122: 108-140 [17] Diehl J, Friz P, Mai H.Pathwise stability of likelihood estimators for diffusions via rough paths. Ann Appl Probab, 2016, 26(4): 2169-2192 [18] Fasen V.Statistical estimation of multivariate Ornstein-Uhlenbeck processes and applications to cointegration. J Econometrics, 2013, 172(2): 325-337 [19] Fouque J, Ichiba T. Stability in a model of interbank lending. SIAM J Financial Math, 2013, 4(1): 784-803 [20] Friz P, Hairer M.A Course on Rough Paths: With an Introduction to Regularity Structures. New York: Springer, 2014 [21] Friz P, Victoir N.Multidimensional Stochastic Processes as Rough Paths. Theory and Applications. Cambridge Studies in Advanced Mathematics, 120. Cambridge: Cambridge Univ Press, 2010 [22] Gubinelli M. Controlling rough paths. J Funct Anal, 2004, 216(1): 86-140 [23] Hu Y.Analysis on Gaussian Spaces. Hackensack, NJ: World Scientific Publishing, 2017 [24] Hu Y, Nualart D.Parameter estimation for fractional Ornstein-Uhlenbeck processes. Stat Probab Lett 2010, 80, (11/12): 1030-1038 [25] Hu Y, Nualart D, Zhou H.Parameter estimation for fractional Ornstein-Uhlenbeck processes of general Hurst parameter. Stat Inference Stoch Process, 2019, 22: 111-142 [26] Hu Y, Nualart D, Zhou H.Drift parameter estimation for nonlinear stochastic differential equations driven by fractional Brownian motion. Stochastics, 2019, 91(8): 1067-1091 [27] Jacod J, Shiryaev A N.Limit Theorems for Stochastic Processes. Berlin: Springer-Verlag, 2003 [28] Kleptsyna M L, Le Breton A.Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Stat Inference Stoch Process, 2002, 5: 229-248 [29] Kukush A, Mishura Y, Ralchenko K.Hypothesis testing of the drift parameter sign for fractional Ornstein- Uhlenbeck process. Electronic J Stat, 2017, 11(1): 385-400 [30] Liptser R S, Shiryaev A N.Statistics of Random Processes, I: General Theory. New York: Springer-Verlag 1977 [31] Liptser R S, Shiryaev A N.Statistics of Random Processes, II: Applications. New York: Springer-Verlag 1978 [32] Lyons T.Differential equations driven by rough signals. Rev Mat Iberoamericana, 1998, 14: 215-310 [33] Lyons T, Caruana M, Léevy T.Difierential Equations Driven by Rough Paths. Berlin: Springer, 2007 [34] Lyons T, Qian Z.System Control and Rough Paths. Oxford: Oxford Univ Press, 2002 [35] Mykland P, Zhang L.Inference for continuous semimartingales observed at high frequency. Econometrica 2009, 77: 1403-1445 [36] Neuenkirch A, Tindel S, Unterberger J.Discretizing the fractional Léevy area. Stoc Process Appl, 2010 120: 223-254 [37] Norvaisa R.Weighted power variation of integrals with respect to a Gaussian process. Bernoulli, 2015 21(2): 1260-1288 [38] Papavasiliou A, Ladroue C.Parameter estimation for rough differential equations. Annals of Statistics 2011, 39(4): 2047-2073 [39] Pickands J.Asymptotic properties of the maximum in a stationary Gaussian process. Trans Amer Math Soc, 1969, 145: 75-86 [40] Pipiras V, Taqqu M S.Integration questions related to fractional Brownian motion. Probab Theory Related Fields, 2000, 118, 251-291 [41] Qian Z, Xu X.It^o integrals for fractional Brownian motion and application to option pricing. arXiv: 1803.00335 [42] Rao P.Semimartingales and Their Statistical Inference. Boca Raton: CRC Press, 1999 [43] Rao P.Statistical Inference for Diffusion Type Processes. Arnold: Oxford Univ Press 1999 [44] Stroock D W, Varadhan S R S. Multidimensional Diffusion Processes. Berlin: Springer-Verlag, 1979 [45] Tudor C, Viens F. Statistical aspects of the fractional stochastic calculus. Annals of Statistics, 2007, 35(3): 1183-1212 [46] Wang X, Xiao W, Yu J.Modeling and forecasting realized volatility with the fractional Ornstein-Uhlenbeck process. Journal of Econometrics, 2023, 232(2): 389-415 |