[1] Abidi H, Hmidi T. Résultats d'existence dans des espaces critiques pour le la MHD inhomogène. Ann Math Blaise Pascal, 2007, 14: 103-148 [2] Abidi H, Gui G. Global well-posedness for the 2-D inhomogeneous incompressible Navier-Stokers system with large initial data in critical spaces. Arch Ration Mech Anal, 2021, 242: 1533-1570 [3] Abidi H, Paicu M. Global existence for the magnetohydodynamic system in critical spaces. Proc Roy Soc Edinburgh Sect A, 2008, 138: 447-476 [4] Bahouri H, Chemin J, Danchin R.Fourier Analysis and Nonlinear Partial Differential Equations. A Serise of Comprehensive Studies in Mathematics. Berlin Heidelberg: Springer-Verlag, 2011 [5] Bie Q, Wang Q, Yao Z. Global well-posedness of the 3D incompressible MHD equations with variable density. Nonlinear Anal Real World Appl, 2019, 47: 85-105 [6] Chemin J. Perfect Incompressible Fluids.Oxford Lecture Ser Math Appl, vol 14. New York: The Clarendon Press, Oxford Univ Press, 1998 [7] Danchin R.On the well-posedness of the incompressible density-dependent Euler equations in the $L^p$ framework. J Differential Equations, 2010, 248: 2130-2170 [8] Danchin R, Bogusław P, Tolksdorf P. Lorentz spaces in action on pressureless systems arising from models of collective behavior. J Evol Equ, 2021, 21: 3103-3127 [9] Danchin R, Mucha P. A lagrangian approach for the incompressible Navier-Stokes equations with variable density. Comm Pure Appl Math, 2012, 65: 1458-1480 [10] Danchin R, Mucha P. Incompressible flows with piecewise constant density. Arch Ration Mech Anal, 2013, 207: 991-1023 [11] Danchin R, Mucha P.Critical Functional Framework and Maximal Regularity in Action on Systems of Incompressible Flows. Méoires de la Société Mathématique de France, vol 143. Paris: Soc Math France, 2015 [12] Danchin R, Wang S. Global unique solutions for the inhomogeneous Navier-Stokes equation with only bounded density, in critical regularity spaces. Comm Math Phys, 2023, 399: 1647-1688 [13] Duvaut G, Lions J. Inéquations en thermoélasticité et magnétohydrodynamique. Arch Rational Mech Anal, 1972, 46: 241-279 [14] Gerbeau J, Le Bris C. Existence of solution for a density-dependent magnetohydrodynamic equation. Adv Differential Equations, 1997, 2: 427-452 [15] Grafakos L. Classical Fourier Analysis.Graduate Texts in Mathematics. Heidelberg: Springer, 2014 [16] Gui G. Global well-posedness of the two-dimensional incompressible magnetohydrodynamics system with variable density and electrical conductivity. J Funct Anal, 2014, 267: 1488-1539 [17] Huang J, Paicu M. Decay estimates of global solutions to 2D incompressible inhomogeneous Navier-Stokes system with variable viscosity. Discrete Contin Dyn Syst, 2014, 34: 4647-4669 [18] Huang J, Paicu M, Zhang P. Global solutions to 2-D inhomogeneous Navier-Stokes system with general velocity. J Math Pures Appl, 2013, 100: 806-831 [19] Ke X, Yuan B, Xiao Y. A Stability problem for the 3D magnetohydrodynamic equations near equilibrium. Acta Math Sci, 2021, 41B: 1107-1118 [20] Lions P.Mathematical Topics in Fluid Mechanics. Vol 1. Incompressible Models. New York: Oxford University Press, 1996 [21] Majda A, Bertozzi A.Vorticity and Incompressible Flow. Cambridge: Cambridge University Press, 2002 [22] Paicu M, Zhang P. Striated regularity of 2-D inhomogeneous incompressible Navier-Stokes system with variable viscosity. Comm Math Phys, 2020, 376: 385-439 [23] Paicu M, Zhang P, Zhang Z. Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density. Comm Partial Differential Equations, 2013, 38: 1208-1234 [24] Zhai X, Yin Z. Global well-posedness for the 3D incompressible inhomogeneous Navier-Stokes equations and MHD equations. J Differential Equations, 2017, 262: 1359-1412 |