[1] Bharucha-Reid A T. Random Integral Equations. New York:Academic Press, 1972 [2] Bharucha-Reid A T. Fixed point theorems in probabilistic analysis. Bull Amer Math Soc, 1976, 82(5):641-657 [3] Brodskiĭ M S, Mil'man D P. On the center of a convex set. Dokl Akad Nauk SSSR, 1968, 59(5):837-840 [4] Browder F E. Nonexpansive nonlinear operators in a Banach space. Proc Nat Acad Sci USA, 1965, 54(4):1041-1044 [5] Dunford N, Schwartz J T. Linear operators. New York:Interscience, 1958 [6] Goebel K, Reich S. Uniform convexity, hyperbolic geometry, and nonexpansive mappings. New York, Basel:Marcel Dekker, 1984 [7] Göhde D. Zum Prinzip der kontraktiven Abbildung. Math Nach, 1965, 30(3/4):251-258 [8] Guo T X. The theory of probabilistic metric spaces with applications to random functional analysis[Master's Thesis]. Xi'an:Xi'an Jiaotong University, 1989 [9] Guo T X. Random metric theory and its applications[Ph D Thesis]. Xi'an:Xi'an Jiaotong University, 1992 [10] Guo T X. A new approach to probabilistic functional analysis//Feng E B. Proceedings of the first China postdoctoral academic conference. Beijing:The China National Defense and Industry Press, 1993:1150-1154 [11] Guo T X. Extension theorems of continuous random linear operators on random domains. J Math Anal Appl, 1995, 193:15-27 [12] Guo T X. The Radon-Nikodým property of conjugate spaces and the w*-equivalence theorem for w*-measurable functions. Sci China Math Ser A, 1996, 39:1034-1041 [13] Guo T X. The relation of Banach-Alaoglu theorem and Banach-Bourbaki-Kakutani-Šmulian theorem in complete random normed modules to stratification structure. Sci China Math Ser A, 2008, 51(9):1651-1663 [14] Guo T X. Relations between some basic results derived from two kinds of topologies for a random locally convex module. J Funct Anal, 2010, 258(9):3024-3047 [15] Guo T X. On some basic theorems of continuous module homomorphisms between random normed modules. J Funct spaces Appl, 2013, Article ID 989102, 13 pages [16] Guo T X, Lin S B. The James theorem in complete random normed modules. J Math Anal Appl, 2005, 308(1):257-265 [17] Guo T X, You Z Y. The Riesz representation theorem on complete random inner product modules and its applications. Chinese Ann Math Ser A (in Chinese), 1996, 17(3):361-364 [18] Guo T X, Zeng X L. Random strict convexity and random uniform convexity in random normed modules. Nonlinear Anal TMA, 2010, 73(5):1239-1363 [19] Guo T X, Zeng X L. An L0(F, R)-valued function's intermediate value theorem and its applications to random uniform convexity. Acta Math Sin, 2012, 28(5):909-924 [20] Guo T X, Zhang E X, Wang Y C, et al. Two fixed point theorems in complete random normed modules and their applications to backward stochastic equations. J Math Anal Appl. https://doi.org/10.1016/j.jmaa.2019.123644 [21] Guo T X, Zhang E X, Wang Y C, et al. L0-convex compactness and its applications to random convex optimization and random variational inequalities. arXiv:1709.07137V6 [22] Guo T X, Zhang E X, Wu M Z, et al. On random convex analysis. J Nonlinear Conv Anal, 2017, 18(11):1967-1996 [23] Guo T X, Zhao S E, Zeng X L. The relations among the three kinds of conditional risk measures. Sci China Math, 2014, 57(8):1753-1764 [24] Guo T X, Zhao S E, Zeng X L. Random convex analysis (I):separation and Fenchel-Moreau duality in random locally convex modules. Sci Sin Math (in Chinese), 2015, 45(12):1960-1980 [25] Guo T X, Zhao S E, Zeng X L. Random convex analysis(II):continuity and subdifferentiability in $L^0$-prebarreled random locally convex modules. Sci Sin Math (in Chinese), 2015, 45(5):647-662 [26] Hanš O. Reduzierende zufällige transformationen. Czechoslovak Math J, 1957, 7(1):154-158 [27] Hanš O. Random fixed point theorems//Spacek A. Transactions of the First Prague Conference on Information Theory, Statistical Decision Functions, Random Processes. Prague:Czechoslovak Acad Sci, 1957:105-125 [28] Hanš O. Random operator equations//Neyman J. Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, Vol.II, Probability Theory. Berkeley:Univ California Press, 1961:185-202 [29] He S W, Wang J G, Yan J A. Semimartingale Theory and Stochastic Calculus. Boca Raton:CRC Press, 1992 [30] James R C. Weakly compact sets. Trans Amer Math Soc, 1964, 113(1):129-140 [31] Kirk W A. A fixed point theorem for mappings which do not increase distances. Amer Math Monthly, 1965, 72(9):1004-1006 [32] Kirk W A. Fixed point theory for nonexpansive mappings//Fadell, Edward, Fournier, et al. Fixed point theory. Berlin:Springer, 1981:484-505 [33] Landes T. Permanence properties of normal structure. Paci J Math, 1984, 110(1):125-143 [34] Lin T C. Random approximations and random fixed point theorems for non-self-maps. Proc Amer Math Soc, 1988, 103(4):1129-1135 [35] Schweizer B, Sklar A. Probabilistic Metric Spaces. New York:Dover Publications, 2005 [36] Smith M A, Turett B. Normal Structure in Bochner Lp spaces. Paci J Math, 1990, 142(2):347-356 [37] Špaček A. Zufällige Gleichungen. Czechoslovak Math J, 19 55, 5(4):462-466 [38] Wagner D H. Survey of measurable selection theorems. SIAM J Control Opti, 1977, 15(5):859-903 [39] Wang Z K. Introduction to probabilistic functional analysis. Adv Math (in Chinese), 1962, 5(1):45-71 [40] Xu H K. Some random fixed point theorems for condensing and nonexpansive operators. Proc Amer Math Soc, 1990, 110(2):395-400 |