[1] Akramov I, Dębiec T, Skipper J, Wiedemann E. Energy conservation for the compressible Euler and Navier-Stokes equations with vacuum. Anal PDE,2020, 13: 789-811 [2] Bardos C, Titi E S. Onsager's conjecture for the incompressible Euler equations in bounded domains. Arch Ration Mech Anal, 2018, 228: 197-207 [3] Beris A, Edwards B.Thermodynamics of Flowing Systems. Oxford: Oxford University Press, 1994 [4] Buckmaster T, De Lellis C, Isett P, Székelyhidi Jr L. Anomalous dissipation for 1/5-Hölder Euler flows. Ann Math, 2015, 182: 127-172 [5] Buckmaster T, De Lellis C, Székelyhidi Jr L. Dissipative Euler flows with Onsager-critical spatial regularity. Comm Pure Appl Math, 2016, 69: 1613-1670 [6] Chen X, Cheng H. Regularity criterion for 3D nematic liquid crystal flows in terms of finite frequency parts in $\dot{B}^{-1}_{\infty,\infty}$. Bound Value Probl, 2021, 2021: Art 23 [7] Chen X, Fan J. A note on regularity criterion for 3D compressible nematic liquid crystal flows. J Inequal Appl, 2012, 2012: Art 59 [8] Chen M, Liang Z, Wang D, Xu R. Energy equality in compressible fluids with physical boundaries. SIAM J Math Anal,2020, 52:1363-1385 [9] Chandrasekhar S. Liquid Crystals.Cambridge: Cambridge University Press, 1992 [10] Cheskidov A, Constantin P, Friedlander S, Shvydkoy R. Energy conservation and Onsager's conjecture for the Euler equations. Nonlinearity, 2008, 21: 1233-1252 [11] Constantin P, Weinan E, Titi E S. Onsager's conjecture on the energy conservation for solutions of Euler's equation. Commun Math Phys, 1994, 165: 207-209 [12] Daneri S, Runa E, Székelyhidi L. Non-uniqueness for the Euler equations up to Onsager's critical exponent. Ann PDE, 2021, 7(1): Art 8 [13] De Gennes P G. The Physics of Liquid Crystals. Oxford: Oxford University Press, 1974 [14] De Lellis C, László Jr. Dissipative continuous Euler flows. Invent Math, 2013, 193: 377-407 [15] Ericksen J L. Hydrostatic theory of liquid crystal. Arch Rational Mech Anal, 1962, 9: 371-378 [16] Eyink G L. Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer. Physica D: Nonlinear Phenomena, 1994, 78(3/4): 222-240 [17] Ericksen J. Conservation laws for liquid crystals. Trans Soc Rheol, 1961, 5: 23-34 [18] Fan J, Li F. Uniform local well-posedness and regularity criterion for the density-dependent incompressible flow of liquid crystals. Commun Math Sci, 2014, 12: 1185-1197 [19] Fan J, Ozawa T.Regularity criterion for the 3D nematic liquid crystal flows. ISRN Math Anal,2012, 2012: Art 935045 [20] Fan J, Ozawa T. Regularity criteria for a simplified Ericksen-Leslie system modeling the flow of liquid crystals. Discrete Contin Dyn Syst, 2009, 25: 859-867 [21] Fan J, Guo B. Regularity criterion to some liquid crystal models and the Landau-Lifshitz equations in $\mathbb{R}^3$. Sci China Ser A, 2008, 51: 1787-1797 [22] Feireisl E, Gwiazda P, Świerczewska A, Wiedemann E. Regularity and energy conservation for the compressible Euler equations. Arch Ration Mech Anal, 2017, 223: 1375-1395 [23] Feireisl E, Rocca E, Schimperna G. On a non-isothermal model for nematic liquid crystal. Nonlinearity, 2011, 24: 243-257 [24] Frank F. Liquid crystals. On the theory of liquid crystals. Discuss Faraday Soc, 1958, 25: 19-28 [25] Gala S, Liu Q, Ragusa M. Logarithmically improved regularity criterion for the nematic liquid crystal flows in $\dot{B}^{-1}_{\infty,\infty}$ space. Comput Math Appl, 2013, 65: 1738-1745 [26] Gao J, Tao Q, Yao Z. Strong solutions to the density-dependent incompressible nematic liquid crystal flows. J Differential Equations, 2016, 260: 3691-3748 [27] Gao Z, Tan Z. Blow-up criterion of classical solutions for the incompressible nematic liquid crystal flows. Acta Math Sci, 2017, 37B: 1632-1638 [28] Guo S, Tan Z. Energy dissipation for weak solutions of incompressible liquid crystal flows. Kinet Relat Models, 2015, 8: 691-706 [29] Hardt R, Kinderlehrer D.Mathematical Questions of Liquid Crystal Theory. New York: Springer-Verlag, 1987 [30] Huang T, Wang C, Wen H. Blow up criterion for compressible nematic liquid crystal flows in dimension three. Arch Ration Mech Anal, 2012, 204: 285-311 [31] Isett P. A proof of Onsager's conjecture. Ann Math, 2018, 188: 871-963 [32] Jiang F, Jiang S, Wang D. Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions. Arch Rational Mech Anal, 2014, 214: 403-451 [33] Jiang F, Jiang S, Wang D. On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain. J Funct Anal, 2013, 265: 3369-3397 [34] Jiang F, Tan Z. Global weak solution to the flow of liquid crystals system. Math Methods Appl Sci, 2009, 32: 2243-2266 [35] Leslie F M. Some constitutive equations for liquid crystals. Arch Rational Mech Anal, 1968, 28: 265-283 [36] Leslie F. Some constitutive equations for anisotropic fluids. Quarterly Journal of Mechanics & Applied Mathematics, 1966, 3: 357-370 [37] Leslie F. Some constitutive equations for liquid crystals. Arch Rational Mech Anal, 1968, 28: 265-283 [38] Leslie F. An analysis of a flow instability in nematic liquid crystals. Journal of Physics D Applied Physics, 1976, 9: 925-937 [39] Li Q, Yuan B. A regularity criterion for liquid crystal flows in terms of the component of velocity and the horizontal derivative components of orientation field. AIMS Math, 2022, 7: 4168-4175 [40] Lin F H. Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena. Comm Pure Appl Math,1989, 42: 789-814 [41] Lions P L.Mathematical Topics in Fluid Mechanics. Vol 2: Compressible Mdels. New York: Oxford University Press, 1998 [42] Liu Q, Zhao J, Cui S. A regularity criterion for the three-dimensional nematic liquid crystal flow in terms of one directional derivative of the velocity. J Math Phys, 2011, 52: 033102 [43] Liu Q, Zhao J. A regularity criterion for the solution of nematic liquid crystal flows in terms of the $\dot{B}^{-1}_{\infty,\infty}$-norm. J Math Anal Appl, 2013, 407: 557-566 [44] Nirenberg L. On elliptic differential equations. Ann Scuola Norm Sup Pisa Cl Sci, 1959, 13: 115-162 [45] Onsager L. Statistical hydrodynamics. Nuovo Cimento, 1949, 6: 279-287 [46] Oseen C. The theory of liquid crystals. Discuss Faraday Soc, 1933, 29: 883-899 [47] Qian C. Remarks on the regularity criterion for the nematic liquid crystal flows in $\mathbb{R}^3$. Appl Math Comput, 2016, 274: 679-689 [48] Qian C. A further note on the regularity criterion for the 3D nematic liquid crystal flows. Appl Math Comput, 2016, 290: 258-266 [49] Serrin J.The initial value problem for the Navier-Stokes equations// Langer R. Nonlinear Problems. Madison: University of Wisconsin Press, 1963: 69-98 [50] Shinbrot M. The energy equation for the Navier-Stokes system. SIAM J Math Anal, 1974, 5: 948-954 [51] Wang D H, Yu C. Global weak solution and large time behavior for the compressible flow of liquid crystals. Arch Rational Mech Anal, 2012, 204: 881-915 [52] Wang T, Zhao X, Chen Y, Zhang M. Energy conservation for the weak solutions to the equations of compressible magnetohydrodynamic flows in three dimensions. J Math Anal Appl, 2019, 480(2): 123373 [53] Wang X, Liu S. Energy conservation for the weak solutions to the 3D compressible magnetohydrodynamic equations of viscous non-resistive fluids in a bounded domain. Nonlinear Anal: Real World Appl, 2021, 62: 103359 [54] Wang Y, Ye Y. Energy conservation for weak solutions to the 3D Navier-Stokes-Cahn-Hilliard system. Appl Math Lett, 2022, 123: 107587 [55] Wang G, Zuo B. Energy equality for weak solutions to the 3D magnetohydrodynamic equations in a bounded domain. Discrete Contin Dyn Syst Ser B, 2022, 27(2): 1001-1027 [56] Wang Y, Huang X. On center singularity for compressible spherically symmetric nematic liquid crystal flows. J Differential Equations, 2018, 264: 5197-5220 [57] Wei R, Yao Z, Li Y. Regularity criterion for the nematic liquid crystal flows in terms of velocity. Abstr Appl Anal, 2014, 2014: Art 234809 [58] Yu C. Energy conservation for the weak solutions of the compressible Navier-Stokes equations. Arch Rational Mech Anal, 2017, 225: 1073-1087 [59] Zhang Z, Tang T, Liu L. An Osgood type regularity criterion for the liquid crystal flows. NoDEA Nonlinear Differential Equations Appl, 2014, 21: 253-262 [60] Zhang Z, Yang X. A regularity criterion for the 3D density-dependent incompressible flow of liquid crystals with vacuum. Ann Polon Math, 2015, 115: 165-177 [61] Zhou Y, Fan J. A regularity criterion for the nematic liquid crystal flows. J Inequal Appl, 2010, 2010: Art 589697 [62] Zhou Y, Fan J, Nakamura G. Global strong solution to the density-dependent 2-D liquid crystal flows. Abstr Appl Anal, 2013, 2013: Art 947291 [63] Zöcher H. The effect of a magneticfield on the nematic state. Discuss Faraday Soc, 1933, 29: 945-957 |