[1] Walsh J B.An introduction to stochastic partial differential equations//Carmona R, Kesten H, Walsh J B, Hennequin P L. Ècole d'Été de Probabilités de Saint-Flour, XIV-1984. Berlin: Springer, 1986: 265-439 [2] Huang J Y, Nualart D, Viitasaari L.A central limit theorem for the stochastic heat equation. Stochastic Process Appl, 2020, 130(12): 7170-7184 [3] Chen L, Khoshnevisan D, Nualart D, et al. Spatial ergodicity for SPDEs via Poincaré-type inequalities. Electron J Probab, 2021, 26: Art 140 [4] Chen L, Khoshnevisan D, Nualart D, et al. Central limit theorems for spatial averages of the stochastic heat equation via Malliavin-Stein's method. Stoch PDE: Anal Comp, 2021. https://doi.org/10.1007/s40072-021-00224-8 [5] Chen L, Khoshnevisan D, Nualart D, et al.Central limit theorems for parabolic stochastic partial differential equations. Ann Inst Henri Poincaré Probab Stat, 2022, 58(2): 1052-1077 [6] Chen L, Khoshnevisan D, Nualart D, et al.Spatial ergodicity and central limit theorems for parabolic Anderson model with delta initial condition. J Funct Anal, 2022, 282(2): 109290 [7] Chen X.Precise intermittency for the parabolic Anderson equation with an (1+1)-dimensional time-space white noise. Ann Inst Henri Poincaré Probab Stat, 2015, 51(4): 1486-1499 [8] Hu Y Z.Some recent progress on stochastic heat equations. Acta Math Sci, 2019, 39B(3): 874-914 [9] Huang J Y, Nualart D, Viitasaari L, et al.Gaussian fluctuations for the stochastic heat equation with colored noise. Stoch Partial Differ Equ Anal Comput, 2020, 8(2): 402-421 [10] Khoshnevisan D, Nualart D, Pu F.Spatial stationarity, ergodicity, and CLT for parabolic Anderson model with delta initial condition in dimension d ≡ 1. SIAM J Math Anal, 2021, 53(2): 2084-2133 [11] Kim K, Yi J.Limit theorems for time-dependent averages of nonlinear stochastic heat equations. Bernoulli, 2022, 28(1): 214-238 [12] Li J Y, Zhang Y.An almost sure central limit theorem for the stochastic heat equation. Statist Probab Lett, 2021, 177: 109149 [13] Li J Y, Zhang Y.An almost sure central limit theorem for the parabolic Anderson model with delta initial condition. Stochastics, 2022. https://doi.org/10.1080/17442508.2022.2088236 [14] Nualart D, Zheng G Q.Averaging Gaussian functionals. Electron J Probab, 2020, 25: 1-54 [15] Khinchine A.Über einen Satz der Wahrscheinlichkeitsrechnung. Fund Math, 1924, 6(1): 9-20 [16] Kolmogoroff A.Über das Gesetz des iterierten Logarithmus. Math Ann, 1929, 101(1): 126-135 [17] Hartman P, Wintner A.On the law of the iterated logarithm. Amer J Math, 1941, 63: 169-176 [18] Strassen V.An invariance principle for the law of the iterated logarithm. Z Wahrsch Verw Gebiete, 1964, 3: 211-226 [19] de Acosta A. A new proof of the Hartman-Wintner law of the iterated logarithm. Ann Probab, 1983, 11(2): 270-276 [20] Shao QM, Su C.The law of the the iterated logarithm for negatively associated random variables. Stochastic Process Appl, 1999, 83(1): 139-148 [21] Zhang Y.The limit law of the iterated logarithm for linear processes. Statist Probab Lett, 2017, 122: 147-151 [22] Conus D, Joseph M, Khoshnevisan D.On the chaotic character of the stochastic heat equation, before the onset of intermitttency. Ann Probab, 2013, 41(3B): 2225-2260 [23] Federer H. Geometric Measure Theory.Berlin: Springer-Verlag, 1969 [24] Khoshnevisan D.Analysis of Stochastic Partial Differential Equations. Providence, RI: the American Mathematical Society, 2014 [25] Khoshnevisan D, Kim K, Xiao Y M.Intermittency and multifractality: a case study via parabolic stochastic PDEs. Ann Probab, 2017, 45(6A): 3697-3751 [26] Nualart D.The Malliavin Calculus and Related Topics. Berlin: Springer-Verlag, 2006 [27] Dharmadhikari S W, Jogdeo K.Bounds on moments of certain random variables. Ann Math Statist, 1969, 40: 1506-1509 [28] Skorokhod A V.Studies in the Theory of Random Processes. Reading MA: Addison-Wesley, 1965 [29] Csörgő M, Révész P. How big are the increments of a Wiener process? Ann Probab, 1979, 7(4): 731-737 |